
 1 

Imputation-aware tag 
SNP selection to 
improve power for large-
scale, multi-ethnic 
association studies 
Genevieve L. Wojcik1, Christian Fuchsberger2,3,#a, 
Daniel Taliun2, Ryan Welch2, Alicia R Martin1,#b, Suyash 
Shringarpure1,#c, Christopher S. Carlson4, Goncalo 
Abecasis2, Hyun Min Kang2, Michael Boehnke2, Carlos 
D. Bustamante1,5, Christopher R. Gignoux*1,#d and 
Eimear E. Kenny*6,7,8,9  
  
1. Department of Genetics, Stanford University School of Medicine, 

365 Lasuen Street, Littlefield Center MC2069, Stanford, CA 
94305, USA 

2. Department of Biostatistics and Center for Statistical Genetics, 
School of Public Health, University of Michigan, 1415 
Washington Heights, Ann Arbor, MI 48109, USA 

3. Center for Biomedicine, European Academy of Bolzano/Bozen 
(EURAC), affiliated with the University of Lübeck, Bolzano, 
Bozen, 39100, Italy 

4. Fred Hutchinson Cancer Center, University of Washington, 1100 
Fairview Ave. N., Seattle, WA 98109, USA 

5. Department of Biomedical Data Science, Stanford University 
School of Medicine, 365 Lasuen Street, Littlefield Center 
MC2069, Stanford, CA 94305, USA 

6. Department of Genetics and Genomic Sciences, Icahn School of 
Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, 
NY 10029, USA 

7. The Charles Bronfman Institute for Personalized Medicine, Icahn 
School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, 
New York, NY 10029, USA 

8. The Icahn Institute of Multiscale Biology and Genomics, Icahn 
School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, 
New York, NY 10029, USA 

9. The Center for Statistical Genetics, Icahn School of Medicine at 
Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, 
USA 

 
#a Current address: Institute of Biomedicine, EURAC research, 
Viale Druso, 1, 39100 Bolzano/Bozen, Italy 
#b Current address: Analytic and Translational Genetics Unit, 
Massachusetts General Hospital, Richard B. Simches Research 
Center, 185 Cambridge Street, CPZN-6818, Boston, MA 02114, 
USA 
#c Current address: 23andMe, 899 W. Evelyn Ave, Mountain View, 
CA 94041, USA 
#d Current address: Colorado Center for Personalized Medicine and 
Department of Biostatistics, University of Colorado Anschutz Medical 
Campus, 13001 E 17th Pl, Aurora, CO 80045, USA  
 
Corresponding Authors: Christopher R Gignoux 
(chris.gignoux@ucdenver.edu) and Eimear E. Kenny 
(eimear.kenny@mssm.edu) 

 
 
 

 

Abstract 
The emergence of very large cohorts in 

genomic research has facilitated a focus on genotype-
imputation strategies to power rare variant association. 
These strategies have benefited from improvements in 
imputation methods and association tests, however little 
attention has been paid to ways in which array design 
can increase rare variant association power. Therefore, 
we developed a novel framework to select tag SNPs 
using the reference panel of 26 populations from Phase 
3 of the 1000 Genomes Project. We evaluate tag SNP 
performance via mean imputed r2 at untyped sites using 
leave-one-out internal validation and standard 
imputation methods, rather than pairwise linkage 
disequilibrium. Moving beyond pairwise metrics allows 
us to account for haplotype diversity across the genome 
for improve imputation accuracy and demonstrates 
population-specific biases from pairwise estimates. We 
also examine array design strategies that contrast multi-
ethnic cohorts versus single populations, and show a 
boost in performance for the former can be obtained by 
prioritizing tag SNPs that contribute information across 
multiple populations simultaneously. Using our 
framework, we demonstrate increased imputation 
accuracy for rare variants (frequency<1%) by 0.5-3.1% 
for an array of one million sites and 0.7-7.1% for an 
array of 500,000 sites, depending on the population. 
Finally, we show how recent explosive growth in non-
African populations means tag SNPs capture on 
average 30% fewer other variants than in African 
populations. The unified framework presented here will 
enable investigators to make informed decisions for the 
design of new arrays, and help empower the next phase 
of rare variant association for global health.  

Significance Statement 
There is a growing recognition in genomic 

research of the need for very large-scale associations 
studies and genome-wide arrays are often the cost-
efficient technology of choice. In this study we explore 
ways to improve array design for rare variant 
imputation, an underused means to increase power in 
association studies.  We describe a pipeline in which an 
array is empirically evaluated based on genome-wide 
imputation accuracy, rather than pairwise linkage 
disequilibrium, to improve tagging and give real-world 
estimates of array performance. We explore the impact 
of patterns of demography on array performance, and 
discuss the trade-off between accurate rare variant 
imputation and trans-ethnic utility. This work provides a 
framework and insights that can guide the next 
generation of array development. 
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Introduction 
The vast majority of human genomic variation 

is rare (Nelson et al. 2012), and an appreciable fraction 
of rare variants are likely to be functionally 
consequential. (Kircher et al. 2014) The gold standard 
approach to assay rare variation (MAF<1%) is via deep 
sequencing. So far, large-scale sequencing studies 
have had some, but limited, success for discovery of 
rare variant associations (Emond et al. 2012; 
Lohmueller et al. 2013; SIGMA Type 2 Diabetes 
Consortium et al. 2014; UK10K Consortium et al. 2015). 
There is a new appreciation that studies of hundreds of 
thousands or millions of individuals will be needed to 
drive well-powered discovery efforts. (Lindquist et al. 
2013; Kosmicki et al. 2016) Currently, genome 
sequencing on this scale is prohibitively expensive and 
computationally burdensome. In contrast, genome-wide 
genotyping arrays are inexpensive, with far less 
bioinformatic overhead compared to sequencing. The 
past decade of genomic research has seen the 
development of myriad commercial high-throughput 
genotyping arrays.(Hoffmann, Kvale, et al. 2011; 
Hoffmann, Zhan, et al. 2011) While initially designed to 
capture common variants (International HapMap 
Consortium 2003), in recent years arrays have been 
leveraged to capture variation at the rare end of the 
frequency spectrum. One strategy is to ascertain rare 
variants directly on arrays, which is restricted to a very 
narrow subset of the rare variant spectrum due to array 
size limits. (Igartua et al. 2015; Wessel et al. 2015; 
McCarthy, Melton, et al. 2016) Another strategy is to 
leverage the haplotype structure determined by 
common variants on the array, which form a 'scaffold', 
for accurate inference of un-genotyped variation 
through multi-marker imputation into sequenced 
reference panels of whole genomes. The strategy of 
genotyping, followed by imputation, has the potential to 
recover rare untyped variants in very large cohorts of 
arrayed samples at no additional experimental cost. 
(Huang et al. 2015; Michailidou et al. 2015) Imputation 
increases the effective sample size, leading to 
increased statistical power. (Pritchard and Przeworski 
2001) This model bridging genotyping and imputation 
has prompted efforts to build deep reference sequence 
databases and a renewed interest in methods for 
improving genome-wide scaffold design. (Auton et al. 
2015; UK10K Consortium et al. 2015; McCarthy, Das, 
et al. 2016) 

Genotype array scaffolds have historically been 
designed using algorithms that select tagging single 
nucleotide polymorphisms (tag SNPs) that are in 
linkage disequilibrium (LD) with a maximal number of 
other SNPs. Tag SNP algorithms are optimized to 
maximize this score, typically described as pairwise 
coverage. However, imputation tools increasingly 
incorporate sophisticated haplotype information to 
impute unobserved variants. (Howie et al. 2012; 
Fuchsberger et al. 2014; Browning and Browning 2016) 
Consequently, it is not clear that tag SNPs that 
maximize pairwise coverage will be tag SNP's that 
provide, in aggregate, the best GWAS scaffold for 
accurate imputation. (de Bakker et al. 2005) Further, 
most tag SNP selection algorithms use LD architecture 

in a single population (Weale et al. 2003; Carlson et al. 
2004), while we know LD patterns can vary extensively 
between populations. (Auton et al. 2015) Historically, 
many commercial arrays were designed by selecting 
tag SNPs from European populations, although arrays 
targeting some other populations have recently entered 
the market. (Hoffmann, Kvale, et al. 2011; Hoffmann, 
Zhan, et al. 2011) The number of SNPs tagged by a tag 
SNP can vary appreciably between populations due to 
demographic forces of migration, population expansion, 
and genetic drift. This may diminish GWAS scaffold 
performance in populations other than those in which 
the tag SNPs were selected, which in turn, can lead to 
reduced power for imputation-based association. This is 
a particularly pernicious problem in populations for 
which no targeted commercial array is available, in 
studies with multi-ethnic populations, and for accurate 
estimation of the transferability of genetic risk across 
populations.   

As association studies grow larger and 
increasingly diverse, there is a need to reassess design 
criteria for GWAS scaffolds and arrays. (Carlson et al. 
2013; Fuchsberger et al. 2016) On the one hand, tag 
SNPs that tag lower frequency variants are likely to be 
on the lower end of the site frequency spectrum and, 
consequentially, more geospatially restricted. (Nelson 
et al. 2008; Bustamante et al. 2011; Gravel et al. 2011; 
Mathieson and McVean 2014) On the other hand, as 
studies grow very large, cohort heterogeneity is likely to 
increase substantially. (Banda et al. 2015; Marouli et al. 
2017) Given finite GWAS scaffold density, examining 
the trade-off between lowering the frequency threshold 
for accurate imputation and extending utility to multiple 
populations will become important. (Nelson et al. 2013; 
Martin et al. 2014) In this manuscript, we describe a 
framework for developing well-powered tag SNP 
selection leveraging thousands of whole genomes from 
diverse populations for balanced cross-population 
coverage. In our study, genomic coverage is evaluated 
based on genome-wide imputation accuracy as 
measured by mean imputed r2 at untyped sites, rather 
than pairwise linkage disequilibrium. Moving beyond 
pairwise metrics allows us to account for haplotype 
diversity across the genome and demonstrates 
population-specific biases from pairwise estimates. 
Assessing accuracy using leave-one-out cross-
validation yields a real-world estimate of genomic 
coverage. We examine the effect of allele frequency, 
correlation thresholds, and population diversity on the 
selection of tag SNP and on the landscape of tag-able 
variation. This work demonstrates that, while there may 
be limits given current reference panels, improving 
GWAS scaffold design is an underused means to 
increase power in association studies. 

Materials and Methods 
Genetic Data: The genetic data are from the 1000 
Genomes Project (1000 Genomes) Phase 3 data 
release, version 2 (7/8/2014) containing whole genome 
sequences for 2,535 individuals from 26 global 
populations. (1000 Genomes Project Consortium et al. 
2015) Sequence data were in VCFv4.1 format, mapped 
to the forward strand and variants annotated as 
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reference or alternate alleles. Only biallelic SNPs were 
included in this analysis (77,224,748 SNPs total). A list 
of known cryptically related individuals was obtained 
from the 1000 Genomes FTP site, and one individual 
from each related pair were subsequently removed 
(n=62). Individuals were assigned to their super 
populations according to the original 1000 Genomes 
assignments (EAS=East Asian, EUR=European, 
AFR=African, SAS=South Asian, AMR=Americas, 
comprising 503, 501, 495, 477, and 341 individuals, 
respectively). Two populations of admixed African 
ancestry (ASW and ACB) were removed from the 
African super population and formed a separate African 
American/Caribbean (AAC) super population (n=156). 
Tag SNP Selection: Allele frequency was estimated 
within super population for each SNP using Plink v1.9. 
(Chang et al. 2015) Linkage Disequilibrium (LD) was 
also calculated within each super population using Plink 
v1.9 and settings for pairwise linkage with a minimum r2 
of 0.2 within a maximum distance of 1 megabase (mb). 
Tag SNP selection was performed per chromosome in 
the program TagIT (Weale et al. 2003; Taliun) 
(https://github.com/statgen/TagIt), with frequency and 
LD files for each super population as input. The TagIT 
algorithm analyzed each super population separately. 
After filtering based on the minor allele frequency (set 
as either 0.5%, 1% or 5%), TagIT annotates the tag 
SNP that has the highest number of LD pairs with r2 
above a minimum threshold (set as either 0.2, 0.5, or 
0.8). The selected tag SNP and all of its linked SNPs 
are masked and TagIT finds the next tag SNP with the 
highest number of LD pairs. The output for each super 
population included for each index tag SNP the number 
of sites in LD, as well as the number of unique sites that 
weren't already tagged by a previously chosen tag. The 
number of unique SNPs tagged across all populations 
per tag SNP was tallied in the final output. 
Cross-population tag SNP ranking and scoring: The 
naive approach ranked potential tags by the absolute 
number of unique SNPs that are tagged across all super 
populations. From this list, the top SNPs were selected 
for the appropriate allocation. To ensure performance of 
the tags across multiple populations, the cross-
population prioritization schema first ranks tags by the 
number of populations in which they are informative, 
meaning they tag at least one site (Supplementary Fig 
1). This ensures that the top ranked SNPs are not 
biased to a super population with large LD blocks or 
high SNP density in which one tag can contribute 
information about many other SNPs. Within each one of 
these categories (all 6 super populations down to only 
1 super population), the tags are ranked by the number 
of unique tags across all six super populations, as was 
done in the original approach. The appropriate 
allocation is selected from the top of this list, scaled to 
the size of the chromosome of interest. 
Metric of Performance: Coverage and imputation 
accuracy were assessed using all polymorphic biallelic 
sites within the 1000 Genomes Phase 3 data release, 
version 2. Sites were categorized into ten discrete minor 
allele frequency bins: (0.005-0.01], (0.01-0.02], (0.03-
0.04], (0.04-0.05], (0.05-0.1], (0.1-0.2], (0.2-0.3], (0.3-
0.4], and (0.4-0.5]. The term "coverage" is used to 
denote the proportion of untyped sites that had at least 

one tag SNP with pairwise r2 greater than a certain 
threshold (0.2, 0.5, or 0.8). Imputation accuracy was 
determined through a leave-one-out internal validation 
approach with the 1000 Genomes Project Phase 3 data 
using a modified version of Minimac.(Fuchsberger et al. 
2014) For this approach, each individual within the 
1000Genomes data had the appropriate tag SNPs 
denoted as ‘genotyped’, with all other sites set as 
missing. These missing sites are then imputed using the 
rest of the 1000Genomes panel as a reference. 
Correlation was calculated comparing the estimated 
dosages from this imputation to the true genotypes from 
the original VCF files. While this internal validation 
approach may introduce overfitting of the data and an 
upwards bias of imputation accuracy, we sought the 
relative imputation accuracy for different methods and 
do not see any bias altering described trends. 
Ascertainment Bias Analyses: Population-specific 
tags were selected separately through TagIT for each 
super population with a genome-wide allocation of 
500,000 sites. All tags had a minimum MAF of 1% and 
a minimum r2 threshold of 0.5.  Each of the single 
population ascertained tag lists assessed for imputation 
accuracy in all six super populations, including their 
index population. Imputation accuracy was calculated 
as previously described and limited to chromosome 9.  
Local Ancestry: Local ancestry was estimated using 
RFMix (Maples et al. 2013) assuming three ancestral 
backgrounds: African, European, and Native American, 
and is described in detail in (Martin et al. 2016) Tracts 
were dropped if smaller than 20 cM to improve accuracy 
in local ancestry estimation. Diploid ancestry with three 
ancestral backgrounds yielded six categories of 
variation.  Imputation accuracy was then calculated 
separately per diploid tract category, with all other 
sections masked out. Results were aggregated across 
all chromosomes to calculate the genome-wide 
performance per diploid ancestry. Tracts were removed 
from analysis if the ancestral diplotype was found in 
fewer than 5 individuals. This included AFR-NAT and 
EUR-NAT within ACB which only occurred in 2 
individuals each, NAT-NAT diplotypes in ASW which 
occurred in one individual, and AFR-AFR diplotypes in 
MXL which occurred in 3 individuals. 
Cross-population patterns of linkage 
disequilibrium: To determine how many sites were in 
LD with tag SNPs across all 6 super populations, we 
selected one million SNPs for a GWAS scaffold using a 
minimum r2 of 0.5 and a minimum MAF of 0.01 on 
chromosome 9. We calculated the number of 
polymorphic sites (MAF>0.5%) and the proportion of 
these sites that were in LD (r2>0.5 or r2>0.8) with at least 
one tag marker. To determine sharing of tags across 
multiple populations, we calculated the proportion of tag 
markers that were informative in other populations, 
conditional upon them being informative in the index 
population. The proportion of sites shared among 
multiple populations was calculated as the proportion of 
tag SNPs that performed in a certain number of 
populations (from 1 to 6 super populations) per super 
population. 
Tagging Potential: Tag SNPs were selected with a 
minimum r2 of 0.5 and a minimum MAF of 0.01 on 
chromosome 9. The potential for tagging was 
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determined assuming an infinite site scaffold, using all 
possible tags until every pairwise relationship with r2 
above 0.5 was captured. The average number of sites 
captured per tag was calculated in each super 
population separately, using only the tags that were 
informative within that population. We also calculated 
these trends assuming a scaffold of one million sites, 
following the same procedures.  The “dark sites” were 
calculated as sites in which there was no pairwise 
correlation with any other site with r2>0.2, determined 
separately for each super population.  
Availability Statement: The input data from 1000 
Genomes Project, Phase 3 is publicly available at the 
following link: 
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/. The 
program TagIt is available on github 
(https://github.com/statgen/TagIt), as well as a tutorial 
for how to select tag SNPs as detailed in this manuscript 
(https://github.com/chrisgene/crosspoptagging).     

Results 
Assessing population-specific 
imputation accuracy with standard 
GWAS scaffold design  

First we designed an experiment to assess 
imputation accuracy performance comparing tag SNP 
selection from different populations. This experiment 
mimics the current design of many commercial arrays, 
in which tag SNPs were selected to capture the 
primarily variation in a single population or a closely 
related group of populations. We built a pipeline using 
the 26 population reference panel from Phase 3 of the 
1000 Genomes Project and the Tagit algorithm(Taliun) 
for tag SNP selection. (Weale et al. 2003) 
(Supplementary Table 1) Individuals were split into 
mutually exclusive “super populations.” These included 
the Admixed American (AMR), East Asian (EAS), 
European (EUR), and South Asian (SAS) populations 
as described in Auton et al.(Auton et al. 2015) In 
addition, we divided the African super population into 
two groups: four populations from Africa (AFR) and two 
populations of African descent in the Americas (AAC) 
(see Methods). Initially, to mimic the design of many 
arrays, tag SNPs were selected from a single super 
population. We assumed a genome-wide allocation of 
500,000 tag SNPs, however analyses for a single 
population tagging strategy were only conducted on 
chromosome 9 with the allocation of 21,107 sites 
proportional to the physical distance of chromosome 9 
compared to all chromosomes combined. Potential tags 
were required to have a minor allele frequency (MAF) ≥ 
1% and be in pairwise LD with the tagged target site 
with a r2 ≥ 0.5. 

The current generation of phase-based 
imputation algorithms (BEAGLE, IMPUTE2, Minimac3) 

leverage local haplotype information and sequenced 
reference panels to improve accuracy of variant 
inference compared to tag SNP approaches. (Marchini 
et al. 2007; Browning and Browning 2007; Howie et al. 
2009; Marchini and Howie 2010; Fuchsberger et al. 
2014; Browning and Browning 2016) Therefore, optimal 
array design depends not only on tag SNP selection, but 
also on empirical evaluation of imputation performance. 
For each of the population-specific GWAS scaffolds, 
imputation accuracy was assessed in all six super 
populations by MAF bins (common, MAF = 0.05-0.5; 
low frequency, MAF = 0.01-0.05; and rare, MAF < 0.01) 
by comparing the imputed dosages to the real 
genotypes through leave-one-out internal validation. 
(see Methods)  

Consistently across all super populations, the 
population from which the tags were ascertained had 
the highest imputation accuracy in the common bin. (S1 
Fig) Trends in imputation accuracy follow known 
patterns of demography. For example, if the tags were 
ascertained in European populations, imputation 
accuracy was best in Europeans (EUR), followed by 
out-of-Africa populations (AMR, SAS, EAS), and worst 
in African ancestry populations (AFR, AAC). (Fig 1) If 
the tags were ascertained in African populations, the 
inverse was observed. (S1 Fig) As expected, the same 
trend of reduced imputation accuracy in non-
ascertained populations was exacerbated in the low 
frequency bin. Imputation of low frequency variants in 
East Asian populations (EAS) was consistently most 
challenging; even when tag SNPs were selected from 
EAS, accuracy of low frequency imputation was the 
same or better in other populations. This can be 
explained by evidence of a recent tight bottleneck 
followed by rapid population grown in EAS, resulting in 
a large proportion of rare variants that are difficult to tag 
due to lower LD, especially with a limited scaffold of 
500,000 sites. (Gravel et al. 2011) In contrast, the 
imputation performance of tag SNPs ascertained in 
AFR, AMR, and AAC populations is the same or better 
compared to the performance in out-of-Africa 
populations. This is likely due to increased allelic 
heterogeneity in African ancestry populations, which 
results in greater haplotypic diversity and a higher 
chance that a rare variant is well tagged by a haplotype 
for imputation. (Auton et al. 2015) The imputation 
accuracy of AMR higher in the rare frequency bin (MAF 
0.5-1%), independent of the ascertainment population, 
is likely due to longer haplotypes resulting from recent 
admixture, allowing the rare variation to be captured 
accurately given the limited allocation. (Gravel et al. 
2013) Importantly, in each case we observe a notable 
drop-off in performance across most of the frequency 
spectrum when examining imputation coverage in 
populations diverging from the one used for tag SNP 
selection. (S1 Fig) 



 5 

 

 
Fig 1: Imputation Accuracy by super population of tags selected in European populations for a scaffold 
assuming 500,000 genome-wide variants. Tags were required to have a MAF≥1% and r2≥0.5 with target sites. This 
trend is observed across all super populations (S1 Fig). 

 

Comparing single versus cross 
population tag SNP selection 
strategies 

When developing a genotyping platform, it is 
useful to assess whether selected tag SNPs segregate 
in the population of interest and contribute to tagging by 
being in LD (high r2) with untagged sites. For example, 
using Illumina’s OmniExpress platform (Illumina) within 
the 1000 Genomes Project data, over 99.7% of the sites 
will be polymorphic (MAF>0.5%) in the overall dataset.  
However, when we stratify by super population, each 
group has a differential loss due to monomorphic sites. 
AFR loses only <1% of sites with a MAF<0.5%, whereas 
EUR and EAS lose 4.4% and 9.2% of variants, 
respectively. Reduction in tagging can result in loss of 
statistical power for downstream analysis. We quantify 
this as “informativeness”, or the ability of a tag SNP to 
both segregate in the population and provide LD 
information (r2>0.5 with at least one untagged site). 
Balancing representation of variation across all groups 
becomes very important in multi-ethnic studies. 

To explore different approaches for GWAS 
scaffold design we compared three strategies for 
selecting tag SNPs; single population tag SNP 
ascertainment, in which all tags are selected from a 
single population; a ‘naïve’ approach, in which all 
populations are combined and tags are selected based 
on composite statistics derived from this multi-
population pool; and a ‘cross-population prioritization’ 
approach, in which tags are prioritized if they are both 

informative in multiple populations and by the number 
of unique sites targeted across all groups (see Methods 
and S2 Fig). We generated lists of tags per method 
assuming a total genome-wide allocation of 500,000 
sites and minimum thresholds of r2>0.5 and minor allele 
frequency (MAF) ≥ 1%. Using these parameters, an 
exhaustive set of tag SNPs were selected using the 
naïve approach with tags ranked by the absolute 
number of sites tagged across the 6 super populations, 
regardless of how many super populations had LD 
between tags and targets. We then re-ranked them 
using the cross-population prioritization approach (S2 
Fig).  

To compare the three approaches, we tallied 
the number of informative tags per population for each 
method to investigate the added value of tags 
contributing information in multiple populations. (Fig 2) 
This was done for all 22 autosomes. As per the design, 
all the single-population tags were informative within the 
super population from which tag SNPs were selected. 
Comparing the naïve and cross-population approaches 
that selected tag SNPs across all populations, the 
cross-population prioritization approach increased the 
number of informative tag SNPs in all populations 
relative to the naïve approach. In the naïve approach, 
we observed that the majority of tag SNPs were 
selected from the AFR population, followed by AAC, 
due to African-descent populations having more 
polymorphic sites across the genome with lower linkage 
disequilibrium. (Henn et al. 2015; Auton et al. 2015) 
Whereas in the cross-population prioritization approach 
variation specific to a single population is down-
weighted, leading to more balanced representation 
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between all 6 super populations. By leveraging cross-
population information the largest boost in the 
proportion of tag SNPs contributing linkage 
disequilibrium information compared to the naive 
approach was observed in non-African descent 
populations (10.5%, 28.6%, 25.9%, and 28.7% in AMR, 
EAS, EUR and SAS, respectively). Even the African 
descent populations (AFR and AAC), which dominate 
the naïve approach, have a higher proportion of tags in 
linkage disequilibrium with target sites with the cross-
population prioritization approach (a 2.2% and 1.0% 
boost for AAC and AFR, respectively).  

To assess performance across the frequency 
spectrum we also stratified our accuracy estimates by 
super population-specific MAF into common, low 
frequency, and rare bins, as previously described. We 
observed that the cross-prioritization approach results 
in a larger proportion of tags being informative 
compared to both the single-population and naïve for 
common tag SNPs (MAF>0.05) in all super populations. 
This is likely because the cross-prioritization approach 
prioritizes potential tag SNPs that provide LD 
information across multiple populations, therefore 
prioritizing common variants tagging common variation. 
However, by limiting tag SNP selection to these 
common variants only, the proportion of tags that 
provide LD information for low frequency variants is 
decreased compared to the single population approach, 

which had the highest proportion of informative tag 
SNPs in low and rare frequency in the target population. 
For example, when tags were ascertained using only 
AAC LD information, 19.5% of the 500,000 SNP 
scaffold were informative for rare variation (MAF<1%) 
and 62.8% for common variation MAF>5%) within AAC 
populations. When the cross-population approach was 
used, ensuring the prioritization of common variation, 
the proportion of tag SNPs informative for rare variation 
dropped to 6% while the proportion informative for 
common variation jumped up to 82.4%. This is 
consistent with low frequency and rare variants being 
population-specific, therefore not tagged by 
cosmopolitan common variation present in multiple 
populations.  A notable exception is that the naïve 
approach contributes the most LD information for rare 
variants in the AMR super population. This is consistent 
with our previous findings showing highest imputation 
accuracy in the rare variation within AMR, even when 
the population from which tag SNPs were ascertained 
was different. The AMR on average exhibit longer 
haplotype lengths from the recently admixed 
populations in the Americas. (Gravel et al. 2013; Auton 
et al. 2015) Because of the long haplotype tract lengths, 
more limited haplotypic diversity, and the limited 
allocation of tag SNPs, a naïve approach emphasizing 
the absolute number of unique sites up-weights 
variation that is informative for at least one of the 
ancestral components present in these populations.  

 
Fig 2: Proportion of tags that are informative by population with the three methods. (Left, lightest) tags selected 
from only a single population, (Center) tags selected by pooling all populations agnostically, and (Right) tags selected 
with the cross-population prioritization approach. Tag SNPs were informative if they were in linkage disequilibrium 
(r2>0.5) with at least one untagged site.

Cross population prioritization of tag 
SNPs increases imputation accuracy 
for all groups across frequency 
spectrum compared to naïve approach 

The goal of tag SNP selection is to inform the 
unmeasured haplotypes, and therefore their 
performance must be evaluated in aggregate. One way 
to assess this is through imputation accuracy. Following 
the observation that cross-population prioritization 
selects a higher proportion of informative common tag 
SNPs for each population, even compared to the single 
population approach, we next assessed what impact 
this would have on imputation accuracy. We deployed 
the same leave-one-out internal cross validation 
approach as before using the 1000 Genomes Project 

populations (see Methods). We again assumed a 
genome-wide scaffold of 500,000 sites and tags had to 
have a MAF>1% and r2>0.5 with tagged sites. 
Imputation accuracy was highest across all population-
specific minor allele frequency bins when ascertaining 
in the target population in non-African non-admixed 
descent continental populations (EAS, EUR, and SAS). 
(S3 Fig) For the two African descent groups (AAC and 
AFR), the cross-population prioritization approach had 
the highest imputation accuracy across all sites. When 
stratified by MAF bins, the increase in informative tag 
SNPs for common variants with the cross population 
approach yielded higher imputation accuracy for 
common variation in all super populations. As 
previously seen, the population-specific nature of low 
frequency and rare variants led to decreased imputation 
accuracy in non-African descent populations for both 
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the cross-population and naïve approach when 
compared to targeted single-population ascertainment. 
The cross-population prioritization approach had higher 
imputation accuracy than the naïve approach for all 
MAF bins.  

As scaffold size can dramatically affect 
imputation accuracy(Spencer et al. 2009), we 
additionally examined allocations of 250,000, 500,000, 
1,000,000, 1,500,000, and 2,000,000 genome-wide 
tags, which were all selected with r2>0.5 and MAF>0.01. 
These allocations approximate the size range of many 
commercially available arrays. The cross-population 
prioritization scheme performed better with higher 
imputation accuracy than the naïve method for all super 
populations across all minor allele frequency bins with 
tags selected. (Fig 3) The biggest improvement came 
with the smaller array sizes. The most marked 

improvement was found in EAS, which originally had the 
lowest imputation accuracy of the 6 super populations 
with the naive approach. Within EAS groups, the cross-
population approach increased imputation accuracy 
overall by 9.8% (from 67.3% to 77.1%) for a tag scaffold 
of 250,000 sites. For a scaffold of 500,000 sites, an 
overall improve of 6.2% was observed (from 77.4% to 
83.6%). Improvements were largely consistent with the 
increase of informative tag SNPs. (Fig 2) As with the 
naive prioritization approach SNPs were 
disproportionately informative within AFR and AAC, 
consistent with admixed ancestry reflected by reference 
panels. For the smaller sizes (250K), the greatest 
increase in performance incorporating cross-population 
information was found within common SNPs 
(MAF>5%). However, the larger sized scaffolds (1-2 
million) showed the most improvement within the low 
frequency bins (MAF<5%).

 

Fig 3: Increased imputation accuracy with cross-population prioritization (solid line) versus naïve approach 
(dashed line) for a minimum pairwise correlation threshold of r2>0.5 and MAF>1% across different scaffold 
sizes. Imputation accuracy was calculated separately within minor allele frequency bins for each super population. 
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Imputation accuracy varies by local 
ancestry background in admixed 
individuals 

We also assessed imputation ancestry 
stratified by local ancestry diplotype in the two admixed 
populations, the AAC and AMR, for a genome-wide 
allocation of 500,000 tag SNPs. First, using phased 
data, we inferred haploid tracts of African, European, 
and Native American local ancestry along the genomes 
of all individuals in the AMR and AAC populations (see 
Methods, (Auton et al. 2015; Martin et al. 2016)). Then 
each variant was inferred to be on one of six ancestral 
diploid tracts; European-European (EUR-EUR), 
European-African (EUR-AFR), European-Native 
American (EUR-NAT), African-Native American (AFR-
NAT), African-African (AFR-AFR) and Native American-
Native American (NAT-NAT). In all local ancestry strata 
the cross-population prioritization yielded improved 
imputation accuracy when compared to the naïve 
approach. When looking at ASW population (Americans 
of African ancestry in South West US), performance 
was high overall with all diploid tracts having imputation 
accuracies of 92.8-96.8% for all sites with minor allele 
frequency above 1%. (S4 Figure) The lowest imputation 
accuracy was found in AFR-AFR tracts, especially at 
the lower end of the frequency spectrum. The highest 
imputation accuracy was found in EUR-EUR tracts 
(94% overall for ASW). In AMR populations, by contrast, 
the NAT-NAT tracts had the lowest performance of all. 
An example can be seen in the MXL population 
(Mexican Ancestry from Los Angeles), where the 
highest imputation accuracy was found in the AFR-EUR 
tracts (overall imputation accuracy of 90.1% for all 
SNPs with MAF>0.5%) and the lowest within NAT-NAT 
tracts (74.8% for all SNPS with MAF>0.5%). (S4B Fig) 
These performances could be reflective of the relative 
availability of reference data relevant to these specific 
ancestral components. 

Evaluating impact of r2 and MAF 
thresholds on tag SNP performance  

Previous standards in scaffold design have 
considered minimum linkage disequilibrium (r2) and 
minor allele frequency (MAF) thresholds when 
prioritizing possible tag SNPs. However, the impact of 
these thresholds are often evaluated through pairwise 
coverage. We explored varying the minimum r2 
threshold (0.2, 0.5, 0.8) and MAF (0.5%, 1%, 5%) to 
assess their impacts on imputation accuracy, as well as 
pairwise coverage, assuming a genome-wide allocation 
of one million tags. For common variants, a higher 
minimum r2 threshold (r2>0.8) resulted in slightly higher 
imputation accuracy. (Fig 4A) However, the sites in the 
low and rare bin demonstrate population-specific 
accuracy only. (S5 Fig) For AFR, SAS, and EAS, a less 
stringent threshold of r2>0.2 had the worst imputation 
accuracy across all frequency bins. Low frequency and 

rare variation had higher imputation accuracy for an r2 
threshold of 0.5 compared to 0.8. Within AAC, AMR, 
and EUR, the low frequency variation had improved 
imputation accuracy with the lowest r2 threshold of 0.2. 
However, the imputation accuracy within this low 
threshold was notably compromised for common 
variants. This indicates that low frequency variation is 
better captured by weak correlation structure, but at a 
cost to common variation in these populations. 
Analyses performed with r2>0.5 had the best balance of 
performance across all frequency bins with the highest 
overall imputation accuracy in all super populations 
except for EAS. (S2 Table) Overall, there were very 
small differences in imputation accuracy between the 
different r2 thresholds. There were much larger 
differences in coverage, including both coverage 
evaluated with minimum r2 (LD) of 0.5 and 0.8. (Fig 4A) 
Additionally, the best “performance” using pairwise 
coverage was highly dependent on the definition of 
coverage. Specifically, if pairwise coverage was 
calculated as the proportion of sites that are in LD with 
r2>0.5, then the best minimum r2 threshold in tag SNP 
selection will be 0.5. This holds true for r2>0.8 as well.  

The impact of minimum minor allele frequency 
threshold was negligible across variants with MAF>5% 
for all non-African populations (S6 Fig). Within 
populations of African descent, limiting tags to variants 
with MAF>5% resulted in increased imputation 
accuracy for all frequency bins, especially for common 
variants. Lowering the MAF to 0.5% reduced accuracy 
in African-descent populations across all frequency 
bins. For EUR, SAS, and AMR, tags with MAF>1% had 
decreased accuracy for variants with MAF 0.5-1% 
compared to when tags are limited to MAF>0.5%. (Fig 
4B) The lowest limit of MAF (0.5%) showed increased 
accuracy for rare variation but at a slight cost to the 
accuracy for common sites (MAF>5%). We concluded 
that the best balance for tag SNP selection across all 
populations among these was MAF>1% within the 
population being tagged, as the imputation accuracy 
was best for MAF>5% for half of the groups (AAC, AFR, 
EAS) and best for MAF>0.5% for the other half (AMR, 
EUR, SAS). (S2 Table) However, the overall differences 
in imputation accuracy was minimal, with less than 1% 
between all lower MAF thresholds across all sites. 
Again, we observed large differences in pairwise 
coverage, despite negligible differences when 
performance is evaluated by imputation accuracy. (S6 
Fig) This is particularly striking for African-descent 
populations (ASW and AFR), where there were large 
gains of pairwise coverage for MAF>1%, compared to 
MAF>0.5% and MAF>5%. As previously described, 
African populations have shorter LD blocks and a 
greater absolute number of polymorphic variants 
compared to other populations. (Auton et al. 2015) 
Therefore, pairwise coverage underestimates 
performance compared to imputation accuracy, as 
addressed below. 
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Fig 4: Influence of (A) minimum r2 threshold and (B) lower MAF threshold on imputation accuracy and 
coverage(r2>0.5 and r2>0.8) within populations from the Americas with an allocation of 1M sites. 

 
 

Tagging potential differs between 
populations 

Efficient tag SNP selection is an opportunity to 
boost power in downstream analyses. In our study, 
African and out-of-Africa populations exhibited distinct 
genetic architectures, which resulted in different 
performance trends. Even when cross-population 
performance was prioritized, it did not guarantee equal 
representation of all population groups within the tag 
SNP set. To determine the contribution of each 
population, we focused on chromosome 9 (42,215 
tags), equivalent to one million sites genome-wide, 
selected with our novel cross-population prioritization 
scheme. This tag SNP allocation resulted in including 
all tags that were informative in at least 3 to all 6 
populations in the scaffold. Out of all tags for 
chromosome 9, 17.96% were informative in all 6 
populations. (S3 Table) No tags were included that were 
informative in only one or two populations. Of tags that 
were informative in 5 out of the 6 super-populations, 
only 54% were in LD with any target sites within EAS 
populations, while 93% were informative in AAC 
populations. (Fig 5A) This trend is consistent with 
cross-population tags tending to be less informative in 
EAS populations compared to the other populations. 
When tags are informative in 3 out of 6 groups, only 
18% were informative in EAS, while 75% were 
informative in AAC. Tags informative in only 2 of the 6 
groups were likely informative in AAC and AFR, the 
African descent populations, while very few of them 
were informative for non-African descent groups, 
consistent with capturing differential LD patterns in 
African populations.(Henn et al. 2011) When tags are 
stratified by MAF (0.5-1%, 1-5%, and >5%), these 
trends are exaggerated in the low frequency and rare 
MAF bins.  (S7 Fig) As expected, the rare variation (0.5-
1% MAF) was highly population-specific with no sites in 
this frequency bin being informative across all 
populations, or even 5 out of the 6 populations. (Gravel 

et al. 2011) For low frequency variation (1-5%), tags 
were the least informative within EAS, with only 36% of 
the tags informative in 5 out of 6 populations. 

Conditional performance, or the ability of a tag 
which is informative in the index population also being 
informative in an additional population, was also 
examined and found to be consistent with known 
population histories. Of tags that are informative within 
AFR, 94% were informative within AAC, while only 38% 
were informative within EAS. (Fig 5B) However, among 
tags that were informative within EAS, 81% were 
informative within African populations. Once again, the 
stratified analyses show exaggerated trends for the low 
frequency and rare MAF bins. (S8 Fig) For the rare 
variation (0.5-1%), only a very small percentage (<10%) 
of tags are informative in other populations (AMR, EAS, 
EUR, SAS) if they were informative within African-
descent populations (AFR and AAC). The high level of 
sharing between AFR and AAC is expected due to the 
high proportion of African ancestry within African-
American and Afro-Caribbean populations. Of tags 
informative within EUR, 78% are also informative within 
AMR, largely due to the high proportion of European 
ancestry within some Hispanic/Latino 
populations.(Moreno-Estrada et al. 2013; Gravel et al. 
2013; Moreno-Estrada et al. 2014)  

The tags were also not equally informative in 
each population when it comes to the number of sites 
they tag with r2>0.5. For chromosome 9, it would take 
81,416 tags to capture all possible tag-able variation 
with an r2>0.5 within AFR populations, while it would 
take only 28,473 tags within EAS populations to 
saturate coverage. However, each tag within the AFR 
populations captures on average 7.17 other sites, 
whereas for EAS populations, each tag captures on 
average 10.27 other SNPs. When restricting the design 
to a million tag SNP scaffold, each tag captures on 
average 16.16 other SNPs within EAS populations and 
12.16 other SNPs in AFR populations. (Table 1) This 
reflects the different underlying genetic architecture of 
these different groups. 
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Population 
All Possible Tags One Million Tag Scaffold 

Number of Tags Sites Captured per 
Tag Number of Tags Sites Captured per 

Tag 
AAC 74,255 8.04 36,336 12.97 

AFR 81,416 7.17 34,548 12.16 

AMR 43,065 9.40 28,691 12.80 

EAS 28,473 10.27 16,457 16.16 
EUR 35,027 9.48 22,111 13.63 

SAS 37,644 9.28 23,480 13.33 
Table 1: Performance per tag SNP to capture all variation possible with r2>0.8 on chromosome 9, as well as 
within a million site genome-wide scaffold allocation through cross-population prioritization. 
 

 

Fig 5: Tag SNPs informativeness across population. (A) Proportion of sites informative (r2>0.5, MAF>0.01, 1M site 
scaffold) across a number of populations, with lines corresponding to the index population. For example, for sites that 
are informative (r2>0.5 with any untyped SNP in genome) in five out of the six populations, only slightly more than half 
are informative in East Asian populations while greater than 90% are informative in African populations. (B) Proportion 
of sites shared across populations, conditional on index population. For example, for sites informative in African 
populations, less than half are informative in East Asian, European, and South Asian populations. 
 
 

Limits of tagging and imputation 
Not all of the human genome can be captured 

through pairwise tagging given existing reference 
panels. For each super population, we filtered for sites 
that were polymorphic (MAF>0.5%) and had no 
pairwise correlation (r2>0.2) with any other site within 
one megabase. The number of these “lone sites” 
without any pairwise correlation was dependent upon 
population. AAC had the greatest number of lone sites, 
but that is likely due to the significantly decreased 
sample size compared to the other populations. (Table 
2) The lowest number of lone sites was found within 
AMR. Although these sites have no notable pairwise 
correlation with any other site in the human genome, 
haplotypes may be informative and allow the recovery 
of information for imputation. We again assumed a one 
million genome-wide tag SNP scaffold allocation with 
minimum MAF of 1% and minimum r2 threshold of 0.5 
and imputed to the entire 1000 Genomes reference 

panel. As expected, imputation accuracy and ability to 
recover information was population-specific. The 
imputation accuracy within AAC was an outlier when 
compared to other populations, with 80.72% of lone 
sites being imputed with at least the accuracy of 
racc2≥0.5 and over 50% of sites being imputed with even 
higher accuracy (racc2≥0.8). Many of these lone sites 
within AAC were captured with pairwise and haplotype 
LD within other populations, primarily AFR and to a 
lesser extent EUR. While there were likely insufficient 
allele counts for accurate correlation estimation within 
AAC due to the small sample size, this information could 
be recovered using a global reference panel. The 
number of unrecoverable “dark sites”, which had no 
pairwise correlation and were not recoverable with 
imputation using haplotype information, was the largest 
in EAS and is consistent with known demography and 
population history yielding an excess of highly rare 
variation compared to other populations.(Gravel et al. 
2011) 
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Table 2: Lone sites by super population and their imputation accuracy for a 1M site scaffold. 

Pairwise coverage versus imputation 
accuracy 

When evaluating the performance of a GWAS 
scaffold, there are numerous factors to take into 
consideration. These include the number of sites you 
have allocated to tag SNPs and what your priorities are 
for balanced representation. To a lesser extent, the 
benefits and pitfalls of prioritizing low-frequency 
variants must be weighed. However, we have 
demonstrated that the influence of these factors is 
highly dependent on how performance is measured. 
The notion of genomic “coverage” has historically been 
estimated using pairwise correlations, and therefore this 
term will be used to denote the proportion of 
polymorphic sites that are in pairwise LD (r2 threshold) 
with at least one tag SNP. We calculated coverage 
separately per super population at an r2 threshold of 0.5 
and 0.8 within minor allele frequency bins identical to 
the imputation accuracy estimation analyses, assuming 
a genome-wide tag SNP set of 500,000 and 1,000,000. 
(Table 3) For a tag SNP set of one million sites, 
coverage was lowest in AFR with an overall average of 
59.15% for all sites with MAF>0.5% and r2>0.5. (S9 Fig) 
When the r2 threshold is raised to 0.8, the proportion of 
sites in linkage disequilibrium with at least one tag SNP 
lowers to 28%. (Fig 6) The highest coverage was found 
in populations from the Americas (AMR) and East Asia 
(EAS). For a lower r2 threshold of 0.5, 79.9% of AMR 
sites with MAF>0.5% were covered. When using the 
higher r2 threshold of 0.8, East Asian populations had 
the highest coverage with 63.08% of sites in LD with at 

least one tag SNP. This difference is even more marked 
when looking at a smaller tag SNP set of 500,000 sites. 
(S10 Fig, S11 Fig) African populations now have an 
overall coverage of 33.17% with r2>0.5 and 14.10% with 
r2>0.8. East Asian populations have the highest 
coverage with 73.16% of sites covered with r2>0.5 and 
55.09% with r2>0.8.  

These trends are in striking contrast to those we 
observed in imputation accuracy. When comparing a 
tag SNP set of 1 million, pairwise LD coverage is the 
lowest in populations of African descent (59% with 
r2>0.5) yet imputation's ability to recover un-typed sites 
is on average high and consistent with other populations 
(imputation accuracy of 89.62%) among SNPs with a 
minor allele frequency above 0.5%. This contrast is also 
found in East Asian populations, which had one of the 
highest proportion of polymorphic SNPs with r2>0.5 for 
coverage (76.95%), but the lowest imputation accuracy 
(86.28%). (Table 3) When sites are stratified by minor 
allele frequency bins, the differences in trends are even 
more striking. (Fig 6, S9 Fig) For example, within the 
lowest frequency bin (0.5% to 1%) for admixed 
populations of African-descent, the coverage of sites for 
a set of 500,000 tag SNPs with r2>0.8 falls below 10%, 
however the imputation accuracy remains relatively 
high at 77.82%. These trends are consistent and more 
dramatic when evaluated within a tag SNP set of 
500,000 sites. (S10 Fig, S11 Fig) These observations 
reinforce the necessity of examining imputation 
accuracy, instead of pairwise coverage, when 
evaluating the performance of tag SNPs. 

 
 

Super population 

Total Number 
of 

Polymorphic 
Sites 

Scaffold of 1,000,000 tags Scaffold of 500,000 tags 
Coverage Imputation 

Accuracy 
Coverage Imputation 

Accuracy r2>0.5 r2>0.8 r2>0.5 r2>0.8 

AAC 780896 63.64% 30.27% 90.59% 34.03% 14.07% 84.85% 
AFR 777207 59.15% 28.05% 89.62% 33.17% 14.10% 83.32% 
AMR 503804 79.90% 53.60% 92.77% 61.00% 37.02% 90.09% 
EAS 367189 76.95% 63.08% 86.28% 73.16% 55.09% 84.16% 
EUR 414184 78.77% 62.65% 91.02% 72.87% 52.86% 88.90% 
SAS 455573 74.84% 56.97% 88.09% 67.28% 45.91% 85.46% 

Table 3: Coverage of 1 million and 500,000 tag SNP set by super population for all polymorphic sites on 
chromosome 9 with MAF>0.5%.

Population Number of 
Individuals 

Number of 
Lone Sites 

Imputation Accuracy Quality Number Unrecoverable with 
r2acc≥0.2 (%) r2acc≥0.2 r2acc≥0.5 r2acc≥0.8 

AAC 156 7,509 90.79% 80.72% 51.72% 691 (9.2%) 
AFR 495 4,497 63.29% 38.73% 7.03% 1,651 (36.7%) 
AMR 341 2,701 48.98% 25.88% 3.78% 1,378 (51.02%) 
EAS 503 4,947 44.37% 12.41% 2.14% 2,752 (55.63%) 
EUR 501 3,881 51.07% 23.22% 3.74% 1,899 (48.93%) 
SAS 477 4,293 51.01% 18.77% 2.26% 2,103 (48.99%) 
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Fig 6: Coverage (dashed lines) versus Imputation Accuracy (solid lines), assuming a genome-wide scaffold 
size of one million tags. Coverage is shown with an r2>0.8. While pairwise tagging values are low, particularly in 
African-descent populations, multi-marker imputation accuracy remains high across groups.

Discussion 
As genomic researchers shift their focus to rare 

variant association in large and increasingly 
heterogeneous populations, it is important to design 
arrays with this ultimate goal in mind. There are 
currently two accepted methods of evaluating the 
performance of a tag SNPs: pairwise LD “coverage” and 
imputation accuracy. Coverage has historically been 
used as a term to denote the proportion of polymorphic 
sites that are in linkage disequilibrium with at least one 
tag marker above a certain r2 threshold. (Barrett and 
Cardon 2006; Pe’er et al. 2006; Li et al. 2008; Bhangale 
et al. 2008) Genotyping arrays are typically compared 
using this score averaged across the genome. 
However, as we and others have demonstrated, 
restricting performance assessment to this definition of 
pairwise coverage is limited by removing multi-marker 
information. (Nelson et al. 2013; Martin et al. 2014) 
Evaluating imputation accuracy, particularly via leave-
one-out cross validation, is highly computationally 
intensive, but provides a better assessment of how well 
untyped variation can be recaptured and a more 
realistic depiction of array performance than pairwise 
coverage. Imputation accuracy is also a more useful 
statistic in a practical sense, especially with the 
development of deeper and more diverse reference 
panels, (Prüfer et al. 2014; Gurdasani et al. 2015; 
Sudlow et al. 2015; Auton et al. 2015; McCarthy, Das, 
et al. 2016) as performing GWAS with imputed variants 
is now the expectation. Emerging evidence suggests 

that rare variants (MAF<1%) that are poorly tagged by 
an individual tag SNP will be accessible via imputation, 
due to added haplotype information, particularly as 
sample sizes move beyond the thousands into the tens 
or hundreds of thousands. (Nelson et al. 2013; 
Fuchsberger et al. 2014) 

Previous tagging strategies have 
predominantly focused on optimizing performance in a 
single population. In prioritizing potential tags by their 
ability to provide linkage disequilibrium information 
across multiple populations, we were able to 
demonstrate that cross population tag SNP selection 
outperforms single population selection. This boost in 
imputation accuracy exists across all populations and 
frequency bins.  We simulated tag SNP sets for a range 
of sizes (250,000-2 million), as well as for several 
minimum minor allele frequencies (0.5%, 1%, 5%) and 
minimum r2 thresholds (0.2, 0.5, 0.8). For investigators 
with limited real estate or budget for tag SNP selection, 
we found that the biggest improvement in imputation 
accuracy provided with our cross population approach 
was with the smaller array sizes (250,000) when 
compared to a naïve design or biased population 
ascertainment. As expected, the influence of MAF and 
r2 threshold was population-specific. For African-
descent populations, including tag SNPs with a low 
threshold of r2 ≥ 0.2 resulted in lower imputation 
accuracy across all bins, while in other populations 
(EUR, AMR, SAS) tags at r2 ≥ 0.2 led to increased 
imputation accuracy for low frequency variants to the 
detriment of common variation. This is due to the lower 
LD patterns overall in African haplotypes, requiring 
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denser coverage. The best balance was found with a 
moderate r2 threshold of ≥ 0.5 for those seeking to 
perform well across all populations. This compromise is 
also present in choosing the lower MAF threshold. 
Limiting tag SNP selection to common variants with 
MAF ≥ 5% produced the highest imputation accuracy 
across all frequency bins within African-descent 
populations. However, this threshold decreased 
imputation accuracy for low frequency and rare variants 
in all other populations. Therefore, the best balance is 
once again found in the moderate value of MAF ≥ 1%. 
Investigators will need to take their priorities into 
account when selecting the correct thresholds for their 
populations and if they have a specific target frequency 
bin. We chose to prioritize all populations equally to 
provide a design of broad global utility, which was 
adopted to construct the GWAS scaffold for Illumina 
Infinium Multi-Ethnic Global Arrays (Illumina) and 
Global Screening Arrays (Illumina). If a study is 
comprised of mostly one ancestral group, then the 
investigators should choose the appropriate thresholds 
tailored for their study. 

Consistent with demographic history, the 
potential to capture variation with a limited allocation is 
unequal between the different populations in the 1000 
Genomes Project. The naïve tagging approach will bias 
tag SNP selection to be primarily informative within 
African-descent populations. The absolute number of 
polymorphic sites within African populations is much 
larger than other populations, and while LD tends to be 
lower than in other populations, the high number of 
potential tags and pairwise correlations overwhelms the 
other populations’ contributions without controlling for 
this unique pattern. By prioritizing potential tags that 
provide information across all populations, the 
population-level contributions are more balanced 
without detriment to the African-descent groups (Fig 4). 
The absolute number of rare variants (MAF < 1%) is 
larger in African populations, but the frequency 
spectrum is more skewed towards rare variants in 
populations with recent bottlenecks and exponential 
population expansion, such as in East Asians. 
Contrasting these two populations (AFR and EAS), East 
Asian populations require fewer sites to saturate 
coverage, with each potential tag being in LD with more 
sites. However, far more polymorphic sites across the 
genome cannot be captured with either pairwise linkage 
disequilibrium or through haplotype information with 
imputation accuracy within these populations due to a 
dearth of LD information. This is amplified by the lack of 
comprehensive reference panels for many populations, 
such as East and South Asia. As reference panels are 
expanded, more variation will be captured to inform tag 
SNP selection and imputation accuracy, and we expect 
imputation accuracy to improve for all populations and 
across the frequency spectrum. (Fuchsberger et al. 
2014)  

The power to identify relevant disease loci is 
inherently constrained by sample size and genome 
coverage. It is important to note that algorithmic 
development both on association testing and imputation 
methods have been a productive avenue of research 
since GWAS began, with new methods providing 
incremental improvements in statistical power. Here, we 

demonstrate a complementary strategy to improve 
statistical power by designing arrays optimized for 
imputation accuracy. Also, as cosmopolitan biobanks 
and large-scale multi-ethnic epidemiological studies 
become more commonplace, it will be important to have 
available platforms with built in trans-ethnic utility. As 
global reference panels become deeper and more 
diverse, more variation will be available for array design. 
The unified framework presented here will enable 
investigators to make informed decisions in the 
development and selection of GWAS scaffolds for future 
large-scale multi-ethnic studies. This increased 
representation of multi-ethnic genetic variation will 
promote the investigation of the genetics of complex 
disease and the improvement of global health in the 
next phase of GWAS.  
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