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Abstract

Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our
understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While
regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of
transcriptome differences across diverse human populations has not been systematically analyzed. To better understand
the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in
humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines
derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic
breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo,
Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that
approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population
differences. However, we find few genes that are systematically differentially expressed among populations. Of this
population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong
evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common
regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects
in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse
populations. Together, these results provide a resource for studies analyzing functional differences across populations by
estimating the degree of shared gene expression, alternative splicing, and regulatory genetics across populations from the
broadest points of human migration history yet sampled.
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Introduction

A central challenge in modern medical and population

genomics is identifying trait-disposing genetic variants, inter-

preting their molecular consequences, and determining the

transferability of their functional roles across individuals and

populations. While genome-wide association studies (GWAS)

have correlated an abundance of common and (increasingly)

rare variants with disease, far fewer studies have pinpointed

causal variants, discovered the biological mechanism of the

association, or replicated their findings in different populations.

Here, we build upon previous work using transcript abundance

and splicing as model systems for understanding how population

substructure can impact the genetic architecture of biomedical

traits [1–4]. In particular, we focus on a set of populations that

span the ‘‘Out-of-Africa’’ migration of anatomically modern

humans using CEPH Human Genome Diversity Panel cell lines,

for which we have collected an extensive ‘omics profile

described below.

Genetic studies of microsatellites panels and single nucleotide

polymorphisms (SNPs) have shown a decrease in genetic diversity

as a function of a population’s geographic distance from eastern or

southern Africa [5–7]. This pattern fits a serial founder effect

model, but it remains unclear whether transcriptome variation

follows this pattern and how closely genetic effects on regulation

mirror human migration history. Previous work has shown that
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population bottlenecks reduce heterozygosity and are associated

with an accumulation of damaging and loss-of-function variation

which can impact gene expression [8,9]. However, further

molecular work is needed to settle the controversy regarding

demography and its impacts on the distribution of functional

genetic variation among populations.

Gene expression studies within and between well-studied

populations have been transformative in cataloging gene expres-

sion differences, expression quantitative trait loci (eQTLs) with

different types of regulatory variants, as well as allele-specific

expression (ASE) that underlie many disease associations [3,10–

16]. Technological advances in RNA sequencing and transcript

assembly have also enabled analysis of variation in transcript

structure and regulation of alternative splicing. For example,

splicing ratios can differ between distant populations even in the

absence of expression differences, and some population-specific

splicing differences are involved in known disease-susceptibility

genes that correspond with differences in prevalence [4,17].

Additionally, thousands of unannotated transcripts have been

identified within populations [18,19], highlighting the difficulty in

distinguishing population-specific transcripts that are functionally

relevant versus those that simply arise from noisy splicing [20].

Elucidating how gene expression regulation and splicing are

impacted by historical human migrations will aid functional

interpretation of the genome and improve our understanding of

the transferability and evolution of genetic regulation across

populations.

This study aims to characterize regulatory, splicing, and

expression differences via RNA sequencing across a global

sampling of seven populations from the HGDP. We have also

performed medium pass genome (,8X) and high coverage

(,96X) exome sequencing of these individuals, enabling us to

characterize genetic effects on transcriptome variation. These

integrated DNA and RNA sequencing datasets are generated from

the broadest points of human migration history yet sampled, and

serve as a resource for future studies analyzing functional

differences across populations.

Results

To assess the molecular underpinnings of population level

transcriptome diversity, we have sequenced the DNA and mRNA

fractions of 45 lymphoblastoid cell lines (LCLs) from seven

populations in the Human Genome Diversity Panel [21]:

Namibian San, Mbuti Pygmies of the Democratic Republic of

Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of

East Asia, Yakut of Siberia, and Mayans of Mexico (Figure 1).

Five of these groups are descended from the ancient human

dispersals out of Africa associated with serial founder effects [5].

The populations in this study capture important differences in

human genetic diversity resulting from early subdivision within

Africa and subsequent serial founder effects into the Near East,

back to North Africa [22], southern and eastern Asia and Central

America.

DNA sequencing was performed via paired-end 101-base pair

Illumina sequencing (Methods). Total coverage per individual

genome and exome was 8.163.3X and 96.5611.0X (mean 6

standard deviation), respectively. Additionally, 15.4M60.5M read

pairs per sample were generated via transcriptome sequencing

performed on lymphoblastoid polyA-selected mRNA, and an

average of 10.864.6 million read pairs per sample were properly

mapped to the hg19 transcriptome (Table 1). Gene quantification

performed through Cufflinks [23] detects an average of 9,141

known genes expressed per each individual cell line, which is

consistent with previous observations [12].

mRNA quantification, reproducibility, and normalization
We randomized library preparations and sequencing across

populations, including approximately one individual per popula-

tion in each lane of sequencing in order to ensure that expression

differences were due to biological rather than technical variation.

We also sequenced technical replicates for each sample by

sequencing each library preparation twice per individual. We

assessed the correlation between replicates and identified prob-

lematic samples as previously described [24]. Briefly, we applied

an optimal power space (OPS) transformation to expressed gene

and transcript quantifications to ensure that all data points

contributed equally to correlation measures, eliminating bias by

low and high FPKM values. Pearson correlations between

technical replicates were high (r = 0.91560.034 (mean 6 sd) for

genes (Figure S1), r = 0.64160.167 for transcripts). Higher

correlations between replicates for gene versus transcript quanti-

fications likely reflect the greater uncertainty in the deconvolution

of the relative abundance of transcripts within a gene. Because

reproducibility between replicates was high, we pooled reads

across replicates and reassessed gene and transcript quantifications

with Cufflinks. For each sample, we determined the median

Pearson correlations (D-statistics) with all other samples. D-

statistics were high overall (median D-statistic = 0.948 for genes,

median D-statistic = 0.862 for transcripts, Figure S2). We identi-

fied two outliers, both within the San population (HGDP01029

and HGDP00992), and we removed these samples as well as the

two remaining San samples from all downstream analyses.

To compare gene expression patterns across individuals, we first

normalized our data. Exon and gene counts were quantified over

regions annotated in UCSC known gene tables. Previous work has

shown that the sample preparation protocol for RNA-seq

introduces nonlinear, sample-specific effects that explain more

than 50% of the variation in expression data [25,26]. These

nonlinear effects can manifest as sequence-specific biases [13],

which we accounted for via conditional quantile normalization

(CQN) [27]. This normalization strategy removed large distribu-

Author Summary

Previous gene expression studies have identified factors
influencing population-level variation in gene regulation.
However, these efforts have been limited to a small set of
well-studied populations. By leveraging the high resolu-
tion of RNA sequencing and broad population sampling,
we survey the landscape of transcriptome variation across
a globally distributed set of seven populations that span a
breadth of human genetic variation and major dispersal
events. We assess differences in gene expression, tran-
script structure, and regulatory variation. We find only 44
transcripts that show significant differences in expression,
likely as a result of the small sample size, but we find that
25% of the variance in gene expression is due to
population differences. This is a larger fraction than
previously observed, and it is likely due to the greater
breadth of human diversity assayed in this study. We also
find that population-specific variance is mostly due to
transcription variability rather than the configuration of
expressed gene products. Additionally, known common
regulatory variants have similar effects across populations
including those we study here. These data and results
serve as a resource cataloging the wide array of gene
expression regulation affecting population variation
among diverse groups, improving our understanding of
transcriptional diversity.

Transcriptome Variety in Global Human Populations
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tional outliers (Figure S4) by accounting for non-linear guanine-

cytosine (GC) content and feature length effects.

Genetic differentiation
As previously observed, genetic variation clearly differentiates

globally diverse populations [28,29] (Figure 2A–D). A tree

generated via hierarchical clustering of FST distances (Fig-

ure 2A–B) shows a clear separation of sub-Saharan African

populations and out-of-Africa populations. Additionally, principal

component analysis (PCA) of autosomal single nucleotide poly-

morphisms (SNPs) in the HGDP dataset (Figure 2C–D) shows

population-specific clustering [29] with these seven global

populations separating within the first four PCs. Despite clear

clustering among the selected populations at the genetic level,

PCA of gene expression levels assessed via Cufflinks reflects high

individual expression variability and shows no clear population

clustering (Figure 2E–F). A formal test of this hypothesis is

presented in the last subsection of the Results section, ‘‘Variability
in expression and alternative splicing ratios,’’ which also considers

the impact of population labeling as a factor in gene expression

differences among individuals.

Differential expression across populations
We next sought to identify individual exons and genes that show

strong evidence of differential expression (DE) among populations.

We used a negative binomial model for gene expression analyses

(Methods) and incorporated a normalization offset term from

CQN via edgeR [30] (Figure S3); we find that our model provides

a good fit to the data (Methods, Figure S4). We identified 251 DE

exons via generalized linear model with a false discovery rate

(FDR) of less than 5% when comparing all populations (Table S1).

Two examples of genes containing highly DE exons are shown in

Figure 3 (expression of all individuals shown in Figure S5), both of

which are involved in immune function and have some previous

evidence for population-specific effects [31,32]. Figure 3A shows

the expression of MX1 colored by population (FDR = 1.57%).

MX1 is known to affect the immune response to influenza, the

West Nile Virus, the avian flu, and other DNA and RNA viruses

[33,34]. Additionally, LSP1 (lymphocyte-specific protein 1,

Figure 3B, FDR = 0.87%) has been associated with breast cancer

risk in Europeans. Interestingly, this signal did not replicate using

admixture mapping in Latina women, perhaps due to differences

in allele frequency among the GWAS and attempted replication

populations [32]. We also identified 44 differentially expressed

transcripts at #5% FDR (Table S2). We used gene set enrichment

analysis (GSEA) of ranked p-values to detect functional enrich-

ment of differentially expressed transcripts [35]. The following

categories were enriched with a FDR#5%: RXR and RAR

heterodimerization with other nuclear receptors (q = 0.007,

canonical pathway), IL 2 signaling pathway (q = 0.015, BioCarta),

and Top 40 genes from cluster 7 of acute myeloid leukemia (AML)

expression profile (q = 0.018, chemical and genetic perturbations)

(Figure S6).

Allelic variation in expression
Allele-specific expression (ASE) can be detected as a read

imbalance at a given heterozygous site; it has previously been

shown to tag regulatory variants [12]. To identify the degree to

which allelic effects on expression vary, we compared ASE sharing

among individuals for variants in the high coverage exomes. We

define normalized ASE sharing as the number of shared significant

ASE events (p,0.05) with at least 30 reads, normalized by sharing

of SNPs that are heterozygous with at least 30 reads, regardless of

presence or absence of a significant allelic imbalance. Reads were

sampled to have equal counts in order to account for expression

variability. There is a rapid reduction in normalized ASE sharing

Figure 1. Collection sites for genome-, exome-, and RNA-sequenced human lymphoblastoid cell lines (LCLs). LCLs were immortalized
from the populations highlighted above, as described previously [21], and the genomes, exomes, and transcriptomes were sequenced. Founder
effect and migration paths have been reproduced from [53] to highlight the breadth of human migration history across which these LCLs were
sampled.
doi:10.1371/journal.pgen.1004549.g001
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as the number of individuals in the comparison set increases

(Figure S7A). That is, even when heterozygous sites are shared,

most allelic imbalances are private to an individual. Some allelic

imbalances are shared by pairs of individuals; rarely do three

individuals in the set share an imbalance and very little sharing

occurs across more than four individuals. We compared normal-

ized ASE sharing across individual pairs and found similar levels of

sharing within and between populations (Figure S7B). A potential

explanation for this lack of ASE sharing among individuals is that

the allelic state of the underlying causal regulatory variant tagged

by the ASE exome site is acting in cis but in weak linkage

disequilibrium, potentially with a rare regulatory variant.

In a previous study, Stranger et al. (2012) mapped eQTLs in

eight populations from the HapMap3 dataset. To determine if

the effects of these previously identified cis-regulatory variants

can be captured in our more diverse HGDP populations, we

compared ASE events in our dataset to previously discovered

eQTLs [3] across populations. We hypothesized that if an

individual is heterozygous for a previously discovered cis eQTL

SNP (eSNP), and a significant ASE signal exists in the associated

gene, then the allelic imbalance is more likely to be driven by the

eQTL (see Figure S8 for a graphical representation of the model).

We assessed the HGDP genotypes of eSNPs identified in

HapMap3 and determined that there is a significant ASE

enrichment within eQTLs associated with heterozygous versus

homozygous eSNPs (p,2.2610216, Figure S9). This finding is

consistent with our model and previous studies [12] and indicates

that our measures of ASE are tagging shared regulatory variation

between these studies. We also calculated an enrichment score

similar to an odds ratio to determine how often ASE events are

found in heterozygous versus homozygous eQTLs compared to

the number of measured sites (Methods) for each HGDP and

HapMap3 population. We observe an enrichment of ASE events

in heterozygous eQTLs versus homozygous eQTLs consistently

in all populations, but we do not observe a signal showing

stronger effects in HGDP populations that are more closely

related to the eQTL discovery population (Figure S10). This

supports the previous notion that the effects of common

regulatory variation are largely shared across populations with

taggability depending on patterns of shared LD [3].

We next sought to determine whether regulatory events

discovered within populations replicate more consistently in more

closely related populations. Because of the limited sample size and

structured populations in this study, de novo eQTL discovery is

infeasible. We therefore assessed cross-population regulatory

sharing using previously discovered eQTLs [3]. We compared

Spearman’s rank correlation coefficient r2 values, a measure akin

to variance explained, between our dataset and the HapMap3

study and find consistency between the associations (r = 0.22, p,

2.2 * 10216). The 2log10(p) values across studies were also

significantly correlated (r = 0.14, p,2.2 * 10216). We next

measured the associations between eQTLs identified in each

population. We find that the effect sizes of eQTLs are significantly

associated across most pairwise populations (Figure 4), indepen-

dent of genetic divergence. The reproducibility of eQTLs is similar

across populations, indicating that previously discovered common

eQTLs reflect either the true causal SNPs or tag the causal eQTL

due to similar LD at the locus (Figure S11). We also assessed the

impact of similarity in allele frequencies between studies on the r2

values and find that eQTLs with similar minor allele frequencies

(MAFs) between studies replicate better than eQTLs with different

minor allele frequencies. As expected, eQTLs with high MAFs in

one study and low MAFs in another study replicate poorly (Figure

S12).
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Novel transcribed regions across populations
Using the genome, exome, and RNA-seq resource described

above, we characterize the completeness of current gene

annotations as previously described [13]. By pooling our dataset

of 1.7 billion paired reads, we identify regions of novel

transcription that lie outside of previously characterized gene

structures. By calculating per-base global sequencing coverage and

merging together continuous transcribed regions above our cutoff

filters, we identified 445,091 total regions of putative transcription

in our LCLs, 384,285 (,86%) of which corresponded to

annotated exons in Refseq, Ensembl, UCSC, or Gencode

databases (Methods, Figure S13). Conversely, 34,555 regions

(,7%) meeting our minimum expression threshold did not overlap

with known annotations (Figure S14).

When we filter regions expressed in at least one individual per

population at greater than or equal to 1 RPKM, there are only a

few hundred of these 34,555 regions expressed across all

individuals in that population (Table S3). Additionally, we see

that every novel transcribed region expressed ubiquitously in one

population is also present in at least one other individual of

another population. This result suggests that the vast majority of

novel transcribed regions are not population specific, but can be

found across multiple diverse human groups.

Variability in expression and alternative splicing
Previous work indicates that exonic splicing may vary signifi-

cantly more than gene expression variability across species within

the same tissue [36,37]. The majority of previous human

transcriptome work has focused on expression and regulatory

variability, leaving the degree of alternative splicing variation

across diverse human populations relatively unexplored. To

understand expression and splicing relationships within and

between human populations, we measured the coefficient of

variation, cv, in gene expression (standard deviation divided by the

mean) and the variability in alternative splicing ratios (Hellinger

distance to the centroid of the splicing ratios of each gene across all

individuals in the population, �dd) using methods developed

previously [4]. We find that the cv and �dd values for genes are

highly correlated between pairwise populations (cv correlations

are, on average, within [0.44, 0.67] between pairwise populations,

p,2.2610216 for each comparison (Figure S15), and �dd correla-

tions are on average within [0.64, 0.82] between pairwise

populations. p,2.2610216 for each comparison (Figure S16)).

The relationships overall between cv and �dd values do not reflect

the genetic divergences seen between pairwise populations (Mantel

test with 1,000 Monte Carlo repetitions between cv Spearman

rank correlation distance matrix and FST gives r= 0.38, p = 0.16,

and the same test between �dd and FST gives r= 0.44, p = 0.14).

We next used established methods to assess the proportion of

gene expression variation among individuals attributable to

population identity [1]. We find that population label, on average,

explains 25.0% of the variation in gene expression among

individuals (Figure 5A) for all genes expressing at least two

transcripts. To assess significance for each gene, we used a

permutation test reshuffling population labels among individuals

and find that the p-value distribution is heavily skewed towards

low p-values compared to the expected uniform distribution

(Figure 5B). This genome-scale level of population stratification for

Figure 2. Analysis of genetic and expression divergence among individuals and populations. A) FST matrix with 100*FST values shown in
the upper half and B) tree generated via hierarchical clustering. C–F) Principal components analysis (PCA) of genetic (C and D) and expression (E and
F) values. Genetic values are from exome variants, which were called from high coverage (96X) sequence data.
doi:10.1371/journal.pgen.1004549.g002

Transcriptome Variety in Global Human Populations
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gene expression is higher than previously seen by the GEUVADIS

consortium [1], which reported ,3% of the variance attributable

to population label as a factor when considering populations of

mostly European descent in the 1,000 Genomes Project. These

results are perhaps expected given that the populations in our

study span a greater breadth of human genetic diversity. We

repeated this analysis comparing each population to all other

populations and find that a smaller proportion of the variation is

due to population-specific differences and that these differences do

not follow the pattern expected by population divergence (Figure

S17). We also decomposed population-specific variability into

variability in overall expression levels as opposed to splicing

variability via multiplicative model, which, as previously demon-

strated [1,4], accounts for differences in scales and units between

expression and splicing metrics. We find that on average, variation

in gene expression explains the majority (75.5%622.3% (mean 6

sd), Figure 5C) of population-specific variation, indicating that

alternative splicing generally makes up the minority of population-

specific variation within humans. We repeated this analysis

comparing each population to all other populations and find

consistent results (Figure S18). We next assessed differential

splicing between pairwise populations. In Figure 6, we show a

sashimi plot of a gene (ENSG00000183291.11, SEP15) with

substantial differential splicing across all pairwise populations.

Overall, we do not see evidence for differential splicing patterns

consistent with population genetic divergence (Figure S19); this

result is consistent with a minority of population-specific variance

in gene expression levels explained by splicing variability.

Discussion

We have analyzed the transcriptome landscape from popula-

tions spanning the breadth of human genomic diversity. While

other studies have characterized variation within and among

populations [12,13], this study provides a unique opportunity to

discover regulatory drivers of expression diversity in serially

bottlenecked populations throughout human migration history.

The HGDP populations in this study were explicitly chosen to

encompass a large geographic range that experienced varied

demographic histories, and thus they provide unique insight into

global variation in transcription. In addition to gaining an

understanding of transcriptome variation in diverse populations,

this study also enables the discovery of novel gene structures and

provides a public resource for analyses of diverse human

transcriptomes.

In this study, we have assessed population-specific expression

variability, alternative splicing, and regulatory variation. We

account for technical artifacts in our analyses, including GC

content and feature length effects, which otherwise add

nonlinear systematic noise to expression data. We show that

we substantially reduce technical sources of variation from these

effects in our data and obtain high reproducibility between

sequencing replicates. We detect few differentially expressed

exons, which is likely affected by the fact that we analyze

cultured cell lines grown in a highly homogenous environment.

Further, given our sample size per population, we are only

powered to detect very dramatic differences in expression

among populations. Using variance decomposition methods

developed previously, we find that 25.0% of transcription

variability can be attributed to population differences among the

six we study here. A previous study that sought to detect

expression differences between the CEU and YRI estimated that

,17% of genes were differentially expressed across these

populations [38]. This estimate is quite comparable to ours.

However, the estimates from both studies are substantially

Figure 3. Differential expression across human populations. Bottom plots show exon positions indicated by rectangles to physical position
scale. Red rectangles are differentially expressed exons. Upper plots show the median conditionally quantile normalized (CQN) expression values per
population of each exon in horizontal lines. Diagonal lines connect each exon. Each exon corresponds one-to-one with the transcript structure shown
below but have been scaled evenly to the width of the plot for ease of visualization. Population orders on the right correspond with the order of
expression values of the last exon. A) Expression by population of the uc002yzh.3 transcript of MX1. B) Expression by population of the uc001lui.3
transcript of LSP1.
doi:10.1371/journal.pgen.1004549.g003

Transcriptome Variety in Global Human Populations
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larger than those reported by the GEUVADIS consortium,

which found that population labels accounted for only ,3% of

transcription differences among 462 individuals sampled from

the European populations in the 1000 Genomes Project as well

as Yorubans. One potential reason why our analysis produced

estimates larger than GEUVADIS is that the European

populations sampled there are more closely related to each

other than the breadth of populations studied here.

Immunity genes as a whole are overrepresented in the set of

differentially expressed genes across populations. This is highly

consistent with the immune role of LCLs we study here. This

finding is also consistent with previous work showing that natural

selection may have favored different alleles in certain immune

genes across human populations and that differences in autoim-

mune disease risks may be a side consequence of differences in

these evolutionary histories [39,40]. The increased expression of

immune genes in LCLs also improves our power to detect

differences with respect to most other gene functions. Potential

mechanisms for differential expression across populations include

variation in cis and trans eQTL allele frequencies, environmental

differences, and epigenetic differences.

We also measured the population-specific variance attributable

to expression versus splicing and find that on average, 75.5% is

due to gene expression differences. This result is consistent with

previous findings in humans and indicates that, within tissues,

splicing differentiates populations less than expression. While this

finding is consistent with previous human studies [1,4], it appears

to be inconsistent with other cross-species work [36,37]. This

suggests that splicing potentially plays a greater role on longer

evolutionary time-scales. Additionally, the methodology used to

assess splicing varies substantially between these studies; in this

study, we have used variance decomposition methods relying on

gene and transcript annotation data, which is more limited in

many other species. In the cross-species studies, exonic splicing

was measured via ‘‘percent spliced in’’ (Y), which may be affected

by expression variability or other forms of transcript differences,

such as those arising from alternative start sites. Further work on

the efficacy of alternative splicing quantification methodologies

would benefit future studies.

We also show that eQTLs that were previously identified across a

wide range of human populations show allelic imbalances and

replicate consistently across populations, but this replication is

Figure 4. Comparison between eQTL correlations (r2) discovered in HapMap3 vs replicated in HGDP. * indicates p,0.05, ** indicates
p,0.01, *** indicates p,0.001. r2 values in this dataset were filtered to the same minimum threshold as in the HapMap3 study for consistency.
doi:10.1371/journal.pgen.1004549.g004
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dependent on minor allele frequencies. Our results suggest that rare

eQTLs within a population that are common in another population

will likely have differing effect sizes. Given that the ,1.2 million SNPs

assayed in HapMap3 are common and therefore largely shared

globally, we have only limited power to assess the effects of rare

regulatory variants. As more transcriptomes are sequenced across

diverse populations, we expect that rarer eQTLs identified in large

population-based genome- and RNA-sequencing studies will identify

more population-specific enrichment patterns.

This study provides the first analyses of transcriptome diversity

from serially bottlenecked populations spanning the breadth of

human migration history. In this study, we integrated genome,

exome, and transcriptome sequencing data from LCLs that are

part of the HGDP. This enabled us to assess regulatory drivers of

global expression variation in serially bottlenecked populations

across a large geographic range and different demographic

histories. We find that population of origin accounts for ,25%

of variation in transcription. While we are powered to detect only

large differences in expression among populations, genes involved

in immunity are overrepresented in this set. Of the 25% difference

in transcription explained by population of origin, expression

differences accounts for three-fold more of the effect than do

splicing differences. Further, the common regulatory variants we

replicate here impact expression across broad geographic groups

relatively uniformly and do not correlate with the degree of genetic

divergence among populations. We look forward to larger studies

spanning the breadth of human diversity that are better powered

to detect additional population-specific effects and cellular

mechanisms of global expression variation. Here, we analyze the

total variance in expression and splicing explained by global

populations, which, together with other studies, suggests a complex

genetic mechanism for population level variation in transcription.

Materials and Methods

RNA preparation, library construction and sequencing
Total RNA was extracted from lymphoblastoid cell lines in

four San, seven Mbuti Pygmies, seven Mozabites, six Pathan,

seven Cambodians, seven Yakut, and seven Mayans from the

Human Genome Diversity Panel using an RNeasy Mini Kit

(Qiagen). mRNAs were purified using magnetic oligo-dT beads

and randomly fragmented to 300–400 nucleotides in length.

First-strand cDNA synthesis was performed using random

hexamers and reverse transcriptase. This was followed by

second-strand cDNA synthesis with dUTP via the dUTP

strand-marking protocol [41]. Illumina TruSeq adaptors were

ligated to the ends of the double-stranded cDNA fragments

followed by digestion with uracil N-glycosylase (UNG) to remove

second strand cDNA. A 300–400 bp size-selection of the final

product was performed by gel-excision, following the Illumina-

recommended protocol.

Each individual was sequenced in a 7-plex library on an

Illumina HiSeq 2000 producing 101-bp paired end reads.

Lanes were assessed for multiple quality metrics including

number of reads, read quality, and reads mapping to the

human genome. Two San individuals failed sequencing quality

control and so all four San individuals were excluded from

further analysis.

Exome capture
Sample genomic DNA was extracted from lymphoblastoid cell

lines. Exonic regions were enriched using an Agilent SureSelect XT

44 Mb All-Exon Capture Kit (v2) and sequenced on Illumina

HiSeq machines.

Exome and genome read mapping and SNP calling
Illumina sequencing reads were mapped to the human reference

genome (hg19) using a standard pipeline informed by the 1000

Genomes Project [42]. Briefly, reads were mapped and paired

using bwa v0.5.9 [43]. Duplicate read pairs were identified using

Picard (http://picard.sourceforge.net/). Base qualities were em-

pirically recalibrated, indels were realigned, and variants were

called using the Genome Analysis Tool Kit (GATK) v1.6 [44].

SNP calls that failed the Variant Quality Score Recalibration

(VQSR) step were filtered out.

Figure 5. Analysis of variation in gene expression and splicing among individuals attributable to population labels. A) Distribution of
percent variance explained by population across n = 5,334 expressed genes with $2 transcripts expressed across all individuals. B) Empirical p-values
for genes in part A. P-values were calculated by permuting population labels for individuals 100 times and comparing to true population labels.
Dashed line indicates the uniform p-value distribution expected under the null hypothesis of no association between population label and
expression. The output from the multiplicative model can be interpreted similarly to an R2 coefficient of a linear model. C) The contribution of gene
expression in the variance explained by the population.
doi:10.1371/journal.pgen.1004549.g005
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FST calculations
Exonic SNPs were annotated using the RefSeq database to

identify synonymous coding variants. High confidence and high

coverage synonymous variants were used to compute Weir &

Cockerham FST values [45] for each pairwise population using

vcftools (v0.1.11) [46].

RNA sequencing read mapping
Reads were mapped to the human reference genome (hg19)

with bowtie-2.0.0 and tophat-2.0.4 split read mapping algorithms

using the ‘‘-b2-very-sensitive’’ parameters [46]. Reads were

subsequently filtered to include only properly paired reads. This

yielded between 12.1 and 44.8 million reads per individual (29.3

mean67.9 s.d. million reads), which corresponds to

62.17613.79% of the total reads per individual.

Quantification and normalization of known exons and
genes

Exon and gene count estimates were created by using bedtools

to count read overlap with known genes and exons from the

UCSC ‘‘knownGene’’ table file downloaded on July 17th, 2012 for

differential expression analysis. Raw exon and gene read counts

Figure 6. Splicing variability across human populations. Each sashimi plot shows the expression within an individual for a differentially spliced
gene (ENSG00000183291.11, SEP15). The RNA-seq read densities supporting expression over the region as well as the inclusion and exclusion of
exons are shown and line densities are proportional to reads supporting splicing events. The y-axis on each sashimi plot indicates the expression in
log10 reads per kilobase per million reads (log10(RPKM)). The plots on the bottom show the transcript structure within the gene.
doi:10.1371/journal.pgen.1004549.g006
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were normalized through conditional quantile normalization,

which reduces expression outliers by accounting for feature level

GC nucleotide content and overall feature length [27].

UCSC knownGene tables were also used for novel transcript

structure analysis because a larger collection of gene structures

have been catalogued in this annotation set. For all other analyses,

gencode v13 annotations were used, because they give one-to-one

correspondence of transcript to gene annotation, enabling the

Gonzalez-Porta methods to be used as they were developed.

Quantification of known transcripts
Transcript level quantification was performed with cufflinks-

2.0.2 and produced FPKM (fragments per kilobase of exon per

million) estimates per transcript. Cufflinks uses a generative

statistical model of paired-end sequencing experiments to derive

a likelihood for the abundances of a set of transcripts given a set of

fragments. The likelihood function can be shown to have a unique

maximum, which Cufflinks finds using a numerical optimization

algorithm. The program then multiplies these probabilities to

compute the overall likelihood that one would observe the

fragments in the experiment, given the proposed abundances on

the transcripts [23].

In order to compare expression levels in this dataset with those

identified in Stranger et al [3], we reran Cufflinks (v2.1.1) using the

Gencode v13 annotations to get both gene and transcript

quantifications. These expression abundances were subsequently

used to quantify the relative importance of variability in gene

expression and variability in alternative splicing to individual

transcript variability.

Annotation of genetic variants
Sequencing variants called from the differentially expressed and

differentially spliced regions were annotated for a series of

functional predictions, conversation scores, and RefSeq database

annotations as described below. This was done in order to better

assess the significance of genetic variants present in the data and

their potential contribution or involvement in modulating gene

expression, transcript splicing, and phenotypic variability. General

annotations include information from: the NHLBI Exome

Sequence Project allele frequencies; 1000 Genomes Project allele

frequencies; publically available Complete Genomics sample allele

frequencies; region and exonic annotations from both Ensembl

and RefGene; and information about protein structure and

function from the UNIPROT and INTERPRO databases.

Conservation scores were also produced from the following

algorithms: GERP++, SLR, SIFT, LRT, PHYLOP, and SiPhy

based on 29 mammalian genomes [47–51]. Lastly, functional

prediction annotations were produced from the following sources:

FATHMM, MutationTaster, Mutation Assessor, LRT, Poly-

Phen2, and the RefSeq RefGene database [50,52].

Identifying unannotated transcription
Methods to characterize regions of previous unannotated

transcription closely followed previously described work [13]

(Figure S14). In brief, for each base of the genome we calculated

global sequencing coverage and split the genome into continuous

transcribed regions. Expression of a region was defined as the

maximum per base coverage of bases in the region. As in previous

studies, we chose a threshold of an average expression level of

5610‘-8 (or 0.05 reads/million) to consider a region expressed and

merged together regions separated by less than 15 bp [13]. Sample

specific expression of these novel regions was then quantified by

calculating RPKM of each region for each individual. For these

analyses, we ran Cufflinks (v2.0.2) using the UCSC KnownGene

tables downloaded on July 16, 2012 because there were fuller

annotations than in Gencode v13.

Allele-specific expression (ASE)
ASE was determined as previously [12]. Briefly, variants were

called for all HGDP individuals in this project using high coverage,

high quality exome variant calls generated according to the

GATK best practices. Samtools was used to determine the number

of reads that matched the reference and non-reference allele.

Imbalance reference allele mapping bias was compensated using

the per individual overall reference ratio within the binomial test.

Differential expression
We used conditional quantile normalization for all exons and

genes with unique start and stop positions, accounting for GC

content and length as covariates, and generated an offset term per

gene or exon and individual. We filtered to exons or genes where

the standard FPKM expression was . = 2 and the length was at

least 100 bp, which left 207,180 of all UCSC knownGene

annotated exons (29.7%) and 72,931 of all annotated genes

(26.8%). Then, we used the following negative binomial model to

detect differential expression:

log(ygi)~bT
g xizogize

Here, y is the count at gene g in individual i, b is the vector of

population effects, x is the population label, o is the offset term

from conditional quantile normalization, and e is the error term.

We perform an analysis of variance (ANOVA) comparing the null

hypothesis of b = 0 to the alternative hypothesis of b?0. In

pairwise population comparisons, we computed genewise exact

tests for differences in the means between the two groups of

negative-binomially distributed counts.

ASE enrichment within eQTLs

Enrichment~

# significant ASE events in het eQTLs
# tested ASE events in het eQTLs

# significant ASE events in hom eQTLs

# tested ASE events in hom eQTLs

eQTLs discovered in the HapMap3 populations were replicated in

our HGDP dataset using genotypes derived from the exome

sequencing variants and preliminary results for the full genomic

variants (Henn & Botigue et al, unpublished data) for eQTLs

outside the exome (Data Access).

Data access
The SRA accession number for the genome and exome sequence

data reported in this paper is SRP036155. The GEO accession

number containing the RNA-Seq data and gene/transcript

expression matrices reported in this paper is GSE54308. Links to

additional data (exome variant files, eQTL SNP data, FST matrices,

gene/transcript expression quantifications, ASE tables, and eQTL

data) and scripts are provided on an FTP site by the Stanford Center

for Genomics and Personalized Medicine computing cluster located

here: http://bustamantelab.stanford.edu/datasets.html.

Supporting Information

Figure S1 Reproducibility across all samples between two

sequencing replicates for each sample. An optimal power space
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(OPS) transformation has been applied to the gencode FPKM

values for expressed genes for each sample. A linear regression line

is shown as a red dashed line in each plot. The x-axis corresponds

to the OPS-transformed FPKM values corresponding with the first

run and the y-axis corresponds to the OPS-transformed FPKM

values corresponding with a second run.

(TIF)

Figure S2 Test for outliers. Histogram of median pairwise

Pearson correlations (D-statistics) between gene and transcript

expression levels after OPS transformation.

(EPS)

Figure S3 Expression distribution pre- and post- normalization.

Each line represents the expression distribution for a single

individual. A) Standard fragments per kilobase per million reads

(FPKM) expression distribution. B) Conditional quantile normal-

ization (CQN) expression distribution accounting for guanine-

cytosine (GC) content and exon length effect QR fits shown in C–

D, as described in Hansen, Irizarry, & Wu, 2012. C) QR fit of GC

content to read counts via B-spline. D) QR fit of exon length to

read counts via B-spline. C–D) Knots on the x-axis indicate the

2.5%, 25%, 50%, 75%, and 97.5% quantiles of the data.

(EPS)

Figure S4 Q-Qplot of goodness of fit statistics using empirical

Bayes dispersions calculated in edgeR. Fit statistics were calculated

as described in Figure 2 of [30].

(TIF)

Figure S5 MX1 and LSP1 CQN expression levels, which

contain differentially expressed exons. These correspond with

Figure 3, but also show the expression levels for each individual in

addition to the thicker lines (which show the medians). As before,

bottom plots show to scale exon positions indicated by rectangles.

Red rectangles are differentially expressed exons. Upper plots

show the median conditionally quantile normalized (CQN)

expression values per population of each exon in horizontal lines.

Diagonal lines connect each exon. Each exon corresponds one-to-

one with the transcript structure shown below, but has been scaled

evenly to the width of the plot for ease of visualization. Population

orders on the right correspond with the order of expression values

of the last exon.

(EPS)

Figure S6 Gene set enrichment analysis (GSEA) plots for

significantly enriched categories. Top portions of plots show the

running enrichment scores (ES) for gene sets as the analysis walks

down the ranked list. The middle portions of the plot shows where

the members of the gene set appear in the ranked list of genes. The

bottom portion of the plot shows the values of the ranking metric

as you move down the list of ranked genes. More details can be

found in the GSEA user guide. A) Enrichment plot for curated

GSEA category PID_RXR_VDR_PATHWAY, defined by RXR

and RAR heterodimerization with other nuclear receptors. B)

Enrichment plot for curated GSEA category PID_BIOCAR-

TA_IL2_PATHWAY, defining genes involved in the IL2 signaling

pathway. C) Enrichment plot for curated GSEA category

VALK_AML_CLUSTER_7, defined by the Top 40 genes from

cluster 7 of acute myeloid leukemia (AML) expression profile; 61%

of the samples are FAB M1 or M2 subtype.

(TIF)

Figure S7 ASE sharing. In all cases where sites had at least 30

reads, reads were downsampled to 30 and the difference from the

overall reference ratio for each individual (close to 0.5 for all

samples) was assessed via binomial p-value so quantify significant

imbalances. A) Percentage of significant ASE sites covered by at

least 30 reads shared between pairs of individuals within a

population, normalized by sharing of heterozygous sites covered

by at least 30 reads, regardless of imbalance. B) Clustering of

normalized ASE sharing between pairs of individuals. Colors

represent the population each individual belongs to.

(EPS)

Figure S8 Model for the influence of cis-eQTLs on ASE sites

with homozygous reference, heterozygous, and homozygous non-

reference eQTLs.

(EPS)

Figure S9 Ratio of significant ASE to measured ASE sites

depending on eSNP genotype. Red line shows the ratio of

significant to measured allelic imbalances in heterozygous eQTLs.

Blue line shows the same scenario within homozygous eQTLs.

(EPS)

Figure S10 Comparison of eQTLs in HapMap3 vs ASE

enrichment in HGDP. Enrichment in ASE is defined as the ratio

between the number of significant/tested ASE events in

heterozygous eQTLs divided by the number of significant/tested

ASE events in homozygous eQTLs. ASE events are considered

significant if p,0.05. The dashed line is drawn at 1, indicating no

enrichment of ASE events in heterozygous eQTLs with respect to

ASE events in homozygous eQTLs.

(EPS)

Figure S11 Linkage disequilibrium (LD) decay across popula-

tion. Full exome sequencing data (196,663 SNPs) were used to

assess linkage within each population.

(EPS)

Figure S12 Reproducibility of eQTLs stratified by minor allele

frequency (MAF). As in Figure 4, the x- and y-axes for each

subplot are the r2 values for each study. The x- and y-axes of the

grid correspond to the binned study MAFs.

(TIF)

Figure S13 Novel transcribed regions analysis workflow.

(EPS)

Figure S14 Coverage distributions of novel transcribed regions.

Stratifications are by A) population and B) individual.

(EPS)

Figure S15 Variability in gene expression across pairwise

populations, as measured by the coefficient of variation (cv)

which is a measure of gene expression dispersion. Only genes that

passed our filters (genes expressed in all individuals, N = 5,334)

were included here.

(TIF)

Figure S16 Variability in alternative splicing across pairwise

populations, as measured by �d, i.e. the mean Hellinger distance to

the centroid of the relative abundances of alternative splice forms

[4].

(TIF)

Figure S17 Percent variance in gene abundance explained by

each population compared to other populations in this study.

Dashed black lines indicate average value.

(EPS)

Figure S18 Percentage of population-specific variance in gene

expression due to overall expression levels as opposed to

alternative splicing.

(EPS)
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Figure S19 Tests for differential splicing across pairwise HGDP

populations using the Anderson method developed in Gonzalez-

Porta et al. Grey dashed lines indicate the expected null p-value

distribution under the null hypothesis.

(EPS)

Table S1 Differentially spliced exons. Significant at the FDR,

5% threshold. FC is fold change, CPM is counts per million, and

LR is likelihood ratio.

(XLSX)

Table S2 Differentially spliced transcripts. Significant at the

FDR,5% threshold. FC is fold change, CPM is counts per

million, and LR is likelihood ratio.

(XLSX)

Table S3 Novel transcribed region metrics across populations.

(XLSX)
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