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Human complex traits and diseases are influenced by hun-
dreds or thousands of genetic variants, each explaining a 
small proportion of phenotypic variation. PRS aggregate 

genetic effects across the genome to measure the overall genetic 
liability to a trait or disease. PRS are not useful as a stand-alone 
diagnostic tool; rather, they have shown promise in predicting indi-
vidualized disease risk and trajectories, stratifying patient groups, 
informing preventive, diagnostic and therapeutic strategies, and 
improving biomedical and health outcomes1–6.

Despite the potential for clinical translation, recent theo-
retical and empirical studies showed that PRS have decreased 
cross-population prediction accuracy, especially when the discov-
ery and target samples are genetically distant7–10. As existing GWAS 
have been conducted predominantly in individuals of European 
descent11–14, the poor transferability of PRS across populations 
has impeded its clinical implementation and raised health dispar-
ity concerns7. Therefore, there is an urgent need to improve the 
accuracy of cross-population polygenic prediction to maximize the 
clinical potential of PRS and ensure equitable delivery of precision 
medicine to global populations.

As efforts to diversify samples in genomic research start to grow, 
the scale of non-European genomic resources has been expanded 

in recent years. Although the sample sizes of most non-European 
GWAS remain considerably smaller than European studies, they 
provide critical information on the variation of genetic effects across 
populations. Initial studies have indicated that the genetic architec-
tures of many complex traits and diseases are largely concordant 
between populations—both at the single-variant level and at the 
genome-wide level15–18, suggesting that the transferability of PRS 
may be improved by integrating GWAS summary statistics from 
diverse populations. However, current PRS construction methods 
have been designed primarily for applications in one homogeneous 
population19–23. Existing methods that can take GWAS summary 
statistics from multiple populations use meta-analysis to summa-
rize genetic effects across training datasets24,25, but this approach 
does not model population-specific allele frequencies and linkage 
disequilibrium (LD) patterns. Alternatively, independent analy-
sis can be performed on each discovery GWAS and the resulting 
PRS can be combined linearly26,27, but this approach does not make 
full use of the genetic overlap between populations to inform PRS 
construction.

Here, we present PRS-CSx, an extension of PRS-CS19, that 
improves cross-population polygenic prediction by jointly mod-
eling GWAS summary statistics from multiple populations.  
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Polygenic risk scores (PRS) have attenuated cross-population predictive performance. As existing genome-wide association 
studies (GWAS) have been conducted predominantly in individuals of European descent, the limited transferability of PRS 
reduces their clinical value in non-European populations, and may exacerbate healthcare disparities. Recent efforts to level 
ancestry imbalance in genomic research have expanded the scale of non-European GWAS, although most remain underpow-
ered. Here, we present a new PRS construction method, PRS-CSx, which improves cross-population polygenic prediction by 
integrating GWAS summary statistics from multiple populations. PRS-CSx couples genetic effects across populations via a 
shared continuous shrinkage (CS) prior, enabling more accurate effect size estimation by sharing information between sum-
mary statistics and leveraging linkage disequilibrium diversity across discovery samples, while inheriting computational effi-
ciency and robustness from PRS-CS. We show that PRS-CSx outperforms alternative methods across traits with a wide range 
of genetic architectures, cross-population genetic overlaps and discovery GWAS sample sizes in simulations, and improves the 
prediction of quantitative traits and schizophrenia risk in non-European populations.
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We compare the predictive performance of PRS-CSx with exist-
ing PRS construction methods across traits with a wide range of 
genetic architectures, cross-population genetic overlaps and discov-
ery GWAS sample sizes via simulations. We further apply PRS-CSx 
to predict quantitative traits using data from the UK Biobank 
(UKBB)28, Biobank Japan (BBJ)29,30, the Population Architecture 
using Genomics and Epidemiology Consortium (PAGE) study31 
and the Taiwan Biobank (TWB)32,33, and predict schizophrenia risk 
using cohorts of European and East Asian ancestries15,34.

Results
Overview of PRS-CSx. PRS-CSx extends PRS-CS19—a recently 
developed Bayesian polygenic modeling and prediction frame-
work—to improve cross-population polygenic prediction by inte-
grating GWAS summary statistics from multiple ancestry groups 
(Methods). PRS-CSx uses a shared continuous shrinkage prior to 
couple SNP effects across populations, which enables more accu-
rate effect size estimation by sharing information between summary 
statistics and leveraging LD diversity across discovery samples. The 
shared prior allows for correlated but varying effect size estimates 
across populations, retaining the flexibility of the modeling frame-
work. In addition, PRS-CSx explicitly models population-specific 
allele frequencies and LD patterns, and inherits from PRS-CS the 
computational advantages of CS priors, and the efficient and robust 
posterior inference algorithm (Gibbs sampling). Given GWAS sum-
mary statistics and ancestry-matched LD reference panels, PRS-CSx 
calculates one polygenic score for each discovery sample, and inte-
grates them by learning an optimal linear combination to produce 
the final PRS (Fig. 1).

Overview of PRS analysis. We have broadly classified polygenic 
prediction methods into two categories: single-discovery meth-
ods, which train PRS using GWAS summary statistics from a 
single-discovery sample; and multi-discovery methods, which com-
bine GWAS summary statistics from multiple discovery samples for 
PRS construction. In this work, in addition to PRS-CSx, we assess 
and compare within- and cross-population predictive performance 
of three representative single-discovery (LD-informed pruning 
and P value thresholding (PT)35, LDpred2 (ref. 20) and PRS-CS19) 
and four multi-discovery (PT-meta, PT-mult26, LDpred2-mult and 
PRS-CS-mult) methods. PT-meta applies PT to the meta-analyzed 

discovery GWAS summary statistics. The three ‘mult’ methods 
respectively apply PT, LDpred2 and PRS-CS to each discovery 
GWAS separately, and linearly combine the resulting PRS. PT-mult 
has been demonstrated to improve the prediction in recently 
admixed populations26. Here, we have extended the idea of PT-mult 
to LDpred2-mult and PRS-CS-mult, creating two new methods to 
quantify the benefits of jointly modeling multiple GWAS summary 
statistics via the coupled shrinkage prior. The workflow for each 
PRS construction method is shown in Fig. 1. In all the PRS anal-
yses, we use the discovery dataset to estimate the marginal effect 
sizes of genetic variants and generate GWAS summary statistics for 
each population; we use the validation dataset, with individual-level 
genotypes and phenotypes, to tune hyperparameters for different 
polygenic prediction methods; and we use the testing dataset, with 
individual-level genotypes and phenotypes, to evaluate the pre-
diction accuracy of PRS and compute performance metrics using 
hyperparameters learnt in the validation dataset. The three data-
sets comprise nonoverlapping individuals. For convenience, we 
use the target dataset to refer to the combination of validation and 
testing datasets, which have matched ancestry. For fair comparison, 
throughout the paper we use 1000 Genomes Project (1KG) Phase 
3 (ref. 36) superpopulation samples (European (EUR) N = 503; East 
Asian (EAS) N = 504; African (AFR) N = 661; admixed American 
(AMR) N = 347) as the LD reference panels across different PRS 
construction methods.

Simulations. We first evaluated the predictive performance of dif-
ferent polygenic prediction methods via simulations. We simulated 
individual-level genotypes of EUR, EAS and AFR populations for 
HapMap3 variants with minor allele frequency (MAF) >1% in at 
least one of the three populations using HAPGEN2 (ref. 37), with 
the 1KG Phase 3 samples as the reference panel. In our primary 
simulation setting, we randomly sampled 1% HapMap3 variants 
as causal variants, which, in aggregation, explained 50% of pheno-
typic variation in each population. We assumed that causal variants 
are shared across populations but allowed for varying effect sizes, 
which were sampled from a multivariate normal distribution with 
the cross-population genetic correlation (rg) set to 0.7. The simula-
tion was repeated 20 times.

We first applied single-discovery methods to GWAS summary 
statistics generated by 100,000 simulated EUR samples and 20,000 
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Fig. 1 | Overview of polygenic prediction methods. The predictive performances of three representative single-discovery (PT, LDpred2 and PRS-CS) and 
five multi-discovery (PT-meta, PT-mult, LDpred2-mult, PRS-CS-mult and PRS-CSx) methods are compared in this study. LDpred2-mult and PRS-CS-mult 
depicted here are not published methods but are helpful for comparing potential improvements from PRS-CSx, which uses a coupled CS prior for the effect 
sizes of genetic variants. The discovery samples (to generate GWAS summary statistics (sumstats)), validation samples (to tune hyperparameters in PRS 
construction methods) and testing samples (to assess prediction accuracy) are nonoverlapping. LD ref, LD reference panel; pop A/B/C, Population A/B/C.
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non-EUR (EAS or AFR) samples, and evaluated their predictive 
performance, measured by the squared correlation (R2) between 
the simulated and predicted phenotypes, in 20,000 target samples, 
which were evenly split into a validation dataset and a testing data-
set (Fig. 2 and Supplementary Table 1). As expected, when the target 
population was EUR, PRS trained on the larger EUR GWAS were 
substantially more accurate than PRS trained on non-EUR GWAS 
(Fig. 2; left panels). However, when the target population was EAS 
or AFR, PRS trained on ancestry-matched non-EUR GWAS were 
more predictive than EUR PRS (Fig. 2; right panels), even though 
the sample sizes of the non-EUR GWAS were much smaller (20,000 
versus 100,000). Among the three single-discovery methods exam-
ined, Bayesian methods (LDpred2 and PRS-CS) consistently out-
performed PT. PRS-CS seemed to be more accurate than LDpred2 
in both within- and cross-population prediction when the discov-
ery GWAS was well-powered, while LDpred2 was more accurate 
when the discovery sample size was limited, probably reflecting the 
strengths and limitations of the different priors used in PRS-CS and 
LDpred2 (Supplementary Note).

We then assessed whether multi-discovery methods can improve 
cross-population polygenic prediction. Specifically, we used differ-
ent multi-discovery methods to combine GWAS summary statistics 
from 100,000 EUR samples and 20,000 non-EUR (EAS or AFR) 
samples as the discovery dataset, and evaluated their predictive per-
formance in independent target samples (Fig. 2 and Supplementary 
Table 1). Figure 2 shows that, in general, multi-discovery methods 
improved prediction accuracy over their single-discovery counter-
parts (that is, PT-meta or PT-mult versus PT; LDpred2-mult ver-
sus LDpred2; PRS-CS-mult versus PRS-CS), reflecting the increase 
in discovery sample size. When the target population was EUR, 

the improvement of PRS-CSx and PRS-CS-mult over PRS-CS was 
marginal, suggesting that the benefits of adding a small non-EUR 
GWAS to the discovery dataset can be limited in this case. However, 
when predicting into non-EUR populations, multi-discovery meth-
ods clearly outperformed single-discovery methods, with Bayesian 
methods (LDpred2-mult, PRS-CS-mult and PRS-CSx) demonstrat-
ing a larger advantage over PT-based methods. PRS-CSx provided 
an additional increase of 10.6% and 16.4% in R2 over PRS-CS-mult 
when the target populations were EAS and AFR, respectively, dem-
onstrating that joint modeling of the genetic architecture across 
populations using the coupled continuous shrinkage prior improves 
polygenic prediction in non-EUR populations.

We conducted a series of secondary simulations, by varying one 
parameter in the primary simulation at a time, to assess the gener-
alizability of the above observations and the robustness of PRS-CSx 
across a wide range of genetic architectures, cross-population 
genetic overlaps and discovery GWAS sample sizes (Extended Data 
Figs. 1–7 and Supplementary Tables 2–9; Supplementary Note). We 
concluded that, while the benefits of using a coupled prior varied 
with simulation designs and may be small in certain scenarios, 
PRS-CSx improved cross-population prediction accuracy relative to 
alternative methods across most simulation settings and was robust 
to model misspecification.

Prediction of quantitative traits in Biobanks. Next, we evalu-
ated the predictive performance of different polygenic predic-
tion methods using 33 anthropometric or blood panel traits from 
UKBB28 (N = 314,916–360,388) and BBJ30 (N = 71,221–165,419; 
Supplementary Table 10). All 33 traits, with two exceptions 
(Basophil and Eosinophil), had moderate-to-high cross-population 
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Fig. 2 | Prediction accuracy of single-discovery and multi-discovery polygenic prediction methods in simulations. 1% HapMap3 variants were randomly 
sampled as causal variants, which, in aggregation, explained 50% of phenotypic variation in each population. Causal variants were shared across 
populations with a cross-population genetic correlation of 0.7; 100,000 simulated EUR samples and 20,000 non-EUR (EAS or AFR) samples were used 
as the discovery dataset. Each bar shows the squared correlation (R2) between the simulated and predicted phenotypes for a polygenic prediction method 
in an independent testing dataset, averaged across 20 simulation replicates. Error bar indicates s.d. of R2 across replicates. Prediction accuracy for each 
simulation replicate is overlaid on the bar plot.
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genetic-effect correlations estimated by POPCORN16 (range 0.37–
0.85; Supplementary Table 10). We applied single-discovery meth-
ods to UKBB or BBJ summary statistics, and used multi-discovery 
methods to combine UKBB and BBJ GWAS. All target samples are 
unrelated UKBB individuals that are also unrelated with the UKBB 
discovery samples. We assigned each target sample to one of the five 
1KG superpopulations [AFR, AMR, EAS, EUR, SAS (South Asian)] 
(Methods), and assessed the prediction accuracy in each target 
population separately, adjusting for age, sex and top 20 principal 
components (PCs) of the genotypes. For each population, the target 
dataset was split randomly and evenly into a validation dataset and 
a testing dataset. The prediction accuracy, measured by variance 
explained (R2) in linear regression after adjusting for covariates, was 
averaged across 100 random splits.

Consistent with simulation results, Bayesian multi-discovery 
methods examined here (LDpred2-mult, PRS-CS-mult and 
PRS-CSx) often outperformed published single-discovery methods 
and PT-based multi-discovery methods, suggesting the importance 
of integrating available GWAS summary statistics and appropriately 
accounting for population-specific LD patterns in cross-population 
prediction (Fig. 3 and Supplementary Table 11). The improvement 
of PRS-CSx in prediction accuracy relative to LDpred2 and PRS-CS 
trained on UKBB summary statistics (which were, on average, more 
accurate than PRS trained on BBJ GWAS), and LDpred2-mult 
and PRS-CS-mult (which were often the second and third best 
multi-discovery method) depended on the target population.

When predicting into the EUR population, PRS-CSx provided a 
consistent but marginal improvement over LDpred2 (median rela-
tive increase in R2: 4.7%) and PRS-CS (median relative increase in 
R2: 5.2%), probably due to the limited power of the BBJ GWAS 
relative to the UKBB GWAS in EUR prediction. The benefit of the 
coupled prior in this case was also limited, as reflected by a small 
improvement of PRS-CSx relative to PRS-CS-mult (median relative 
increase in R2: 2.2%; Fig. 3a, left panel and Supplementary Table 11),  
which was consistent with the observations in simulations. When 
the target population was EAS, however, PRS-CSx substantially 
increased the prediction accuracy relative to single-discovery meth-
ods: the median relative improvements in R2 were 52.3% and 32.9%, 
respectively, when compared with LDpred2 and PRS-CS trained 
on UKBB GWAS, and 69.8% and 74.4%, respectively, when com-
pared with LDpred2 and PRS-CS trained on BBJ GWAS, suggest-
ing that PRS-CSx can leverage large-scale EUR GWAS to improve 
the prediction in non-EUR populations. PRS-CSx also had a 
median improvement of 10.5% (two-sided Wilcoxon signed-rank 
test Pwilcoxon = 3.90 × 10−4) and 8.3% (Pwilcoxon = 2.84 × 10−6) rela-
tive to LDpred2-mult and PRS-CS-mult, respectively, dem-
onstrating the benefits of jointly modeling summary statistics 
from multiple populations in trans-ancestry prediction (Fig. 3a,  
middle panel and Supplementary Table 11). When the target popula-
tion did not match any of the discovery samples, PRS-CSx was still 
able to increase the prediction accuracy. For example, when predict-
ing into the AFR population, the median improvements of PRS-CSx 
relative to LDpred2 and PRS-CS trained on UKBB GWAS were 45.1% 
and 16.9%, respectively, and the median improvements relative to 
LDpred2-mult and PRS-CS-mult were 22.2% (Pwilcoxon = 2.38 × 10−5) 
and 7.1% (Pwilcoxon = 2.99×10−5), respectively (Fig. 3a, right panel and 
Supplementary Table 11).

We next sought to replicate the relative performance of different 
PRS construction methods in the Taiwan Biobank (TWB)32, which 
is a community-based prospective cohort study of the Taiwanese 
population. Among the 33 quantitative traits we examined in UKBB 
and BBJ, 21 were also available in TWB. All PRS were trained on 
the UKBB and/or BBJ GWAS, validated in the UKBB EAS samples 
(where hyperparameters were learnt; Supplementary Table 12), and 
evaluated in the TWB sample comprising 10,149 unrelated individu-
als, adjusting for age, sex and top 20 PCs of the genotypes. Figure 3b  

shows that single-discovery methods trained on UKBB and BBJ 
GWAS had similar performance in the TWB sample, even though 
UKBB GWAS were much larger (Fig. 3b and Supplementary  
Table 13). Bayesian multi-discovery methods showed substantial 
improvement in prediction accuracy compared with single-discovery 
methods. PRS-CSx provided a median improvement of 39.5% rela-
tive to PRS-CS (the best single-discovery method) and 8.2% relative 
to PRS-CS-mult (the second best multi-discovery method), sug-
gesting the robustness of PRS-CSx when model parameters learnt 
in validation datasets were applied to external independent testing 
datasets. Overall, results in the TWB closely reproduced the pat-
terns observed in the UKBB EAS samples (Fig. 3a, middle panel).

We further investigated whether adding African American sam-
ples to the discovery dataset can improve the prediction in the AFR 
population. Among the 33 traits we examined, 14 were also avail-
able in PAGE31 (N = 11,178–49,796), a genetic epidemiology study 
comprising largely African American and Hispanic/Latino sam-
ples (Supplementary Table 10). All UKBB-PAGE and BBJ-PAGE 
genetic-effect correlations were moderate-to-high (range 0.44–
1.00; Supplementary Table 10). Although the discovery and target 
samples had largely matched ancestry, applying PRS-CS (or other 
single-discovery methods) to PAGE summary statistics alone pro-
duced low prediction accuracy in the AFR population with only a few 
exceptions, due to the small sample size of the PAGE study (Fig. 3c  
and Supplementary Table 14). However, integrating UKBB, BBJ and 
PAGE summary statistics using PRS-CSx (Supplementary Table 15)  
dramatically outperformed single-discovery methods, and the 
median relative improvement in R2 was 28.1% when compared 
with PRS-CSx trained on UKBB and BBJ GWAS only, suggesting 
that PRS-CSx benefits from including samples that have matched 
ancestry with the target population in the discovery dataset, even 
if the non-European GWAS included are considerably smaller than 
European studies (Fig. 3c and Supplementary Table 14). We note, 
however, that the overall prediction accuracy in the AFR population 
remained low relative to the predictions in EUR and EAS individu-
als, reflecting highly imbalanced sample sizes in the training GWAS 
across populations (Extended Data Fig. 8). We additionally assessed 
the convergence of the model fitting algorithm used in PRS-CSx, 
and confirmed that the Gibbs sampler achieved reasonable conver-
gence and mixing38 (Extended Data Fig. 9; Supplementary Note).

Schizophrenia risk prediction. Last, we evaluated the predictive 
performance of different polygenic prediction methods for dichot-
omous traits. We used schizophrenia as an example, for which 
large-scale EUR and EAS GWAS along with multiple individual-level 
cohorts are available (Supplementary Table 16). Specifically, we used 
GWAS summary statistics derived from the Psychiatric Genomics 
Consortium (PGC) wave 2 EUR samples (33,640 cases and 43,456 
controls)34 and ten PGC EAS cohorts15 (7,856 cases and 11,562 con-
trols) as the discovery dataset. For the additional seven EAS cohorts 
for which we had access to individual-level data, we set aside one 
cohort (KOR1; 687 cases and 492 controls) as the validation dataset 
(for hyperparameter tuning), and applied a leave-one-out approach 
to the remaining six cohorts. More specifically, we used one of the 
six cohorts in turn as the testing dataset, and meta-analyzed the 
remaining five cohorts with the ten PGC EAS cohorts using an 
inverse-variance-weighted meta-analysis to generate the discov-
ery GWAS summary statistics for the EAS population. The pre-
diction accuracy of different PRS construction methods was then 
evaluated in the left-out (testing) cohort, adjusting for sex and  
top 20 PCs.

Consistent with previous observations, PRS trained on EAS 
GWAS were more predictive in EAS cohorts than those trained 
on PGC EUR summary statistics15, despite the larger sample 
size for the EUR GWAS (Fig. 4a and Supplementary Table 17).  
Among single-discovery methods examined, LDpred2 and PRS-CS 
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performed substantially better than PT, highlighting the impor-
tance of modeling LD patterns for highly polygenic traits. By inte-
grating EUR and EAS summary statistics, Bayesian multi-discovery 
methods dramatically increased the prediction accuracy rela-
tive to single-discovery methods. Compared with LDpred2, the 
best-performing single-discovery method in this analysis, PRS-CSx 
increased the median R2 on the liability scale (assuming 1% of dis-
ease prevalence) from 0.043 (LDpred2 trained on EAS GWAS) and 
0.031 (LDpred2 trained on EUR GWAS) to 0.063, a relative increase 
of 45.4% and 104.9%, respectively. PRS-CSx also approximately 
doubled the prediction accuracy of PT-meta and PT-mult, with a 
relative increase of 135.9% (from 0.027 to 0.063) and 95.3% (from 
0.032 to 0.063) in the median liability R2, respectively. In addition, 
PRS-CSx provided consistent, although relatively small, improve-
ment over LDpred2-mult (relative increase in median R2: 8.7%) 
and PRS-CS-mult (relative increase in median R2: 5.9%), suggest-
ing that, in practice, PRS-CSx can increase predictive power over 
Bayesian ‘mult’ methods even for highly polygenic architecture  
(Fig. 4a and Supplementary Table 17), a scenario where the benefit 

of the coupled prior was reduced in simulations (Extended Data  
Fig. 1 and Supplementary Table 2). Other performance metrics, 
including Nagelkerke’s R2, odds ratio (OR) per standard deviation 
change of PRS, and OR comparing top 10% with bottom 10% of 
the PRS distribution, showed a consistent pattern (Supplementary 
Table 17). Finally, PRS-CSx can more accurately identify individuals 
at high/low schizophrenia risk than alternative methods, showing 
a 2.9, 3.5 and 4.2-fold increase in the proportion of schizophrenia 
cases across the six testing cohorts when contrasting the top 10%, 
5% or 2% of the PRS distribution with the bottom 10%, 5% or 2%, 
respectively (Fig. 4b and Supplementary Table 18).

Discussion
We have presented PRS-CSx, a Bayesian polygenic prediction 
method that integrates GWAS summary statistics from multiple 
populations to improve the prediction accuracy of PRS in ances-
trally diverse samples. PRS-CSx leverages the correlation of genetic 
effects and LD diversity across populations to more accurately local-
ize association signals and increase the effective sample size of the 
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Fig. 3 | Relative prediction accuracy for quantitative traits in each target population. a–c, Relative prediction performance for single-discovery and 
multi-discovery PRS construction methods using discovery GWAS summary statistics from UKBB and BBJ, across 33 traits, in different UKBB target 
populations (EUR, EAS and AFR) (a); from UKBB and BBJ, across 21 traits, in the Taiwan Biobank (TWB) (b); from UKBB, BBJ and PAGE, across 14 traits,  
in different UKBB target populations (EUR, EAS and AFR) (c). Each datapoint shows the relative increase of prediction performance, defined as  
R2/R2

PRS-CS (UKBB) – 1, in which R2
PRS-CS (UKBB) is the R2 of the trait in the same target population using PRS-CS trained on the UKBB GWAS summary statistics.  

In UKBB target populations (a, c), R2 was averaged across 100 random splits of the target samples into validation and testing datasets. The crossbar 
indicates the median of the relative increase of predictive performance across the traits examined. median N, median sample size across the respective 
discovery GWAS. The trait MCHC was not included in the AFR panel because its R2 from PRS-CS (UKBB) was almost 0, which inflated relative increase of 
prediction performance for other methods.
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discovery dataset, while accounting for population-specific allele 
frequency and LD patterns. We have shown, via simulation studies, 
that PRS-CSx robustly improves cross-population prediction over 
existing methods across traits with varying genetic architectures, 
genetic overlaps between populations and discovery GWAS sample 
sizes. Using quantitative traits from multiple biobanks as well as 
schizophrenia cohort studies of European and East Asian ancestries, 
we have further demonstrated that PRS-CSx can leverage large-scale 
European GWAS to boost the accuracy of polygenic prediction in 
non-European populations, for which ancestry-matched discovery 
GWAS may be orders of magnitude smaller in sample size.

PRS-CSx is expected to provide larger power gains when the 
GWAS in the target population has lower statistical power, while 
well-powered GWAS from other populations are available. This 
often happens when predicting into a non-EUR population, where 
ancestry-matched GWAS have limited sample sizes but large-scale 
EUR GWAS already exist. By integrating EUR and non-EUR 
GWAS, PRS-CSx can substantially improve the prediction accuracy 
in non-EUR populations, which alleviates the imminent challenge 
of polygenic prediction in under-represented populations. In con-
trast, PRS-CSx may provide limited increase in prediction accu-
racy when a well-powered GWAS in the target population already 
exists and GWAS from other populations have smaller sample sizes 
and lower statistical power. In practice, this happens almost exclu-
sively for predictions in the EUR population. We note that, whereas 
PRS-CSx increased the prediction in non-European populations for 
most of the traits examined in this study, the amount of improve-
ment in prediction accuracy over alternative methods varied across 
traits. Future research is needed to dissect the effects of potential 
factors on the accuracy of cross-ancestry polygenic prediction and 
to better understand the behavior of different prediction algorithms 
for individual traits.

PRS-CSx is designed to flexibly model GWAS summary statis-
tics from multiple populations where SNP effect sizes and/or LD  
patterns differ. For two or more GWAS conducted in independent 
samples from the same population where effect sizes and LD patterns 
are expected to be highly concordant, a fixed-effect meta-analysis is 
probably the optimal approach to combine the GWAS and maximize 
statistical power. However, we do not recommend meta-analyzing 
summary statistics across populations and applying single-discovery 
methods (for example, LDpred2 or PRS-CS) to the meta-GWAS for 
two reasons: (1) the LD pattern of a cross-ancestry meta-analyzed 
GWAS is a mixture of population-specific LD, which is difficult to 
appropriately model. Rather, accurately modeling LD patterns is 
often crucial to the performance of Bayesian polygenic prediction 
methods. (2) The predictive performance of these ‘meta’ methods 
depends heavily on whether the assumption of the fixed-effect 
meta-analysis (that is, consistent SNP effects across populations) is 
accurate. These methods are thus less adaptive to a wide range of 
cross-population genetic architectures compared with PRS-CSx or 
the ‘mult’ methods. That said, many existing studies have released 
only summary statistics from cross-population meta-analysis, in 
which case applying single-discovery methods to the meta-GWAS 
remains a useful approach in practice. We believe that releas-
ing ancestry-specific summary statistics from multi-ancestry 
genomic studies is critical for understanding comparative genetic 
architectures between populations, and for flexible and accurate 
cross-population polygenic modeling and prediction.

The use of PRS-CSx, as well as the ‘mult’ methods examined in 
this work, requires a validation dataset to tune hyperparameters and 
learn the optimal linear combination of population-specific PRS, and 
an independent testing dataset where the final PRS can be generated 
and evaluated. As non-European genomic resources remain lim-
ited, independent validation and testing datasets are often difficult  
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to identify, and a single target cohort may be too small to be split 
into validation and testing sets. To facilitate the use of PRS-CSx, we 
have released posterior SNP effects and linear combination weights 
for all the traits and target populations examined in this study. In 
addition, in certain applications, it may be preferable to calculate 
PRS for all samples in the target cohort rather than stratifying them 
into different ancestry groups. For example, returning genomic 
predictions to patients with recently admixed ancestries in clinical 
settings would be difficult as ancestries are not distinct entities, and 
genetic ancestry assignments may be inconsistent with self-reported 
race/ethnicity, illuminating the complexity of communicating 
population-stratified PRS results to patients. In these scenarios, 
PRS-CSx provides an ‘auto’ version which automatically learns the 
global shrinkage parameter from the discovery summary statistics, 
and a ‘meta’ option which integrates population-specific posterior 
SNP effects using an inverse-variance-weighted meta-analysis in 
the Gibbs sampler. Combining the ‘auto’ and ‘meta’ algorithms thus 
generates a trans-ancestry PRS that can be applied to all samples in 
the target cohort without the need for a validation dataset39. We note 
that, although simpler to implement, the ‘meta’ option is expected 
to be less accurate compared with the linear combination approach 
that optimizes PRS estimation separately in each target population.

Whereas PRS-CSx can take an arbitrary number of GWAS sum-
mary statistics as input, an ancestry-matched LD reference panel 
is required for each discovery sample, which may be challeng-
ing to build for GWAS conducted in admixed populations or in 
samples with large genomic diversity40. Although we have shown 
that PRS-CSx is robust to imperfectly matched LD reference pan-
els, future work is needed to better model summary statistics from 
recently admixed populations41,42.

Finally, we note that, although PRS-CSx can improve cross- 
population polygenic prediction, the gap in the prediction accuracy 
between European and non-European populations remains consid-
erable. Indeed, sophisticated statistical and computational methods 
alone will not be able to overcome the current Eurocentric biases 
in GWAS. Broadening the sample diversity in genomic research 
to fully characterize the genetic architecture and understand the 
genetic and nongenetic contributions to human complex traits and 
diseases across global populations is crucial to further improve the 
prediction accuracy of PRS in diverse populations.
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Methods
PRS-CSx. PRS-CSx is an extension of PRS-CS19, which enables the integration of 
GWAS summary statistics from multiple populations to improve cross-population 
polygenic prediction. Consider the following Bayesian high-dimensional linear 
regression model for K populations:

yk = Xkβk + ϵk, ϵk ∼ MVN
(

0, σ2
kI
)

, π
(

σ2
k

)

∝ σ−2
k , k = 1, 2, · · · , K,

where, for each population k, yk is a vector of standardized phenotypes (zero mean 
and unit variance) from Nk individuals, Xk is an Nk × Mk matrix of standardized 
genotypes (each column has zero mean and unit variance), βk is a vector of SNP 
effect sizes, ϵk is a vector of normally distributed nongenetic effects with variance 
σ2
k, for which we assign a noninformative scale-invariant Jeffreys prior, and I is 

an identify matrix. We use j = 1, 2, · · · , M  to index the M unique SNPs across 
populations. For SNP j in population k, we place a continuous shrinkage prior 
on its effect size βjk, which can be represented as global-local scale mixtures of 
normals:

βjk ∼ N
(

0, σ2
k

Nk
ψ j

)

, ψ j ∼ Gamma
(

a, δj
)

, δj ∼ Gamma (b,ϕ) ,

where ϕ is a global shrinkage parameter shared across all SNPs that models 
the overall sparseness of the genetic architecture, and ψj is a local, SNP-specific 
shrinkage parameter that is adaptive to marginal GWAS associations. By assigning 
a gamma–gamma hierarchical prior on ψj (specifically, the Strawderman–Berger 
prior with a = 1 and b = 1/2 in this work), the marginal prior density of βjk has 
a sizable amount of mass near zero to impose strong shrinkage on small noisy 
signals, and, in the meantime, heavy Cauchy-like tails to avoid over-shrinkage of 
truly nonzero effects.

We note that, when SNP j is available in multiple GWAS summary statistics, 
the continuous shrinkage prior is shared across populations (that is, both ϕ 
and ψj do not depend on k), enabling information sharing between summary 
statistics while allowing for varying SNP effect sizes across populations to retain 
modeling flexibility. More specifically, given the variance parameters σ2

k,ϕ and ψj, 
and the marginal least squares estimates of the SNP effect sizes in population k, 
ˆβk = XT

k yk/Nk, the posterior mean of βk is

E
[

βk|
ˆβk

]

= (Dk + Ψ−1
)

−1ˆβk,

where Dk = XT
kXk/Nk is the LD matrix for population k, and 

Ψ = diag {ψ1, ψ2, · · · , ψM} is a diagonal matrix (Supplementary Note). It can be 
seen that Ψ does not depend on k and thus the amount of shrinkage applied to each 
SNP is shared across populations. Meanwhile, population-specific LD patterns are 
explicitly modeled via the LD matrix Dk.

Given the summary statistics and ancestry-matched LD reference panel for 
each discovery sample, the PRS-CSx model can be fitted using a Gibbs sampler 
with block update of posterior SNP effect sizes, without the need to access 
individual-level data (Supplementary Note). Monomorphic or rare variants not 
present in the GWAS summary statistics or population-specific LD reference panel 
of population A are not included in the construction of PRS for population A. If a 
SNP is present in population A but is monomorphic or rare in other populations, 
its effect size is not coupled across populations in posterior inference but the SNP 
is included in the PRS of population A such that population-specific associations 
can be captured (Fig. 1). In the extreme, unlikely, scenario where there is no 
overlapping SNP between input GWAS summary statistics, PRS-CSx reduces to 
applying PRS-CS separately to each discovery GWAS. PRS-CSx inherits many 
features from PRS-CS, including robustness to varying genetic architectures, 
multivariate modeling of population-specific LD patterns, and computational 
efficiency. In this work, we used precalculated 1KG Phase 3 LD reference panels43 
for EUR, EAS, AFR and AMR populations, which were constructed for HapMap3 
variants with MAF >1%. We recommend using 1,000 × K Markov Chain Monte 
Carlo (MCMC) iterations with the first 500 × K steps as burn-in in Gibbs sampling, 
where K is the number of discovery populations, reflecting the growing number 
of unknown parameters with the number of discovery GWAS jointly modeled. 
For a fixed global shrinkage parameter ϕ, PRS-CSx returns posterior SNP effect 
size estimates for each discovery population, which can be used to calculate K 
population-specific PRS in the target sample. For each ϕ value, we fitted a linear 
(or logistic) regression of the z-scored PRS (one for each discovery population) in 
the validation dataset:

y ∼ wϕ,1PRSϕ,1 + wϕ,2PRSϕ,2 + · · · + wϕ,KPRSϕ,K,

where y is the trait of interest, PRSϕ,k is the standardized PRS for population k, 
and wϕ,k is the regression coefficient. We screened four different ϕ values, 10−6, 
10−4, 10−2 and 1.0, in this work. The ϕ value and the corresponding regression 
coefficients for the linear combination of PRS that maximized the R2 in the 
validation dataset were used in the testing dataset to calculate the final PRS:

PRS = ŵϕ̂,1PRSϕ̂,1 + ŵϕ̂,2PRSϕ̂,2 + · · · + ŵϕ̂,KPRSϕ̂,K.

Alternative PRS construction methods. P value thresholding. LD-informed 
pruning and P value thresholding (PT)35 selects clumped SNPs of a certain statistical 
significance to be included in the PRS calculation. We performed PT using PRSice-2 
(ref. 44) with the default parameter settings: the clumping was performed with a 
radius of 250 kb and an r2 threshold of 0.1. We used 1KG superpopulation samples 
(EUR, EAS, AFR or AMR) whose ancestry matched the discovery sample as the LD 
reference panel for clumping. The P value threshold among 10−8, 10−7, 10−6, 10−5, 
3 × 10−5, 10−4, 3 × 10−4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 and 1.0 that maximized the R2 
in the validation dataset was selected, and used in the independent testing dataset to 
calculate the final PRS and its performance metrics.

LDpred2. LDpred2 (ref. 20), an improved version of the LDpred algorithm21, is 
a Bayesian polygenic prediction method that adjusts marginal SNP effect size 
estimates from GWAS summary statistics to calculate the PRS. LDpred2 assigns 
a point-normal prior to SNP effect sizes, where the proportion of causal variants 
is a tunable parameter, and infers posterior effects using a Gibbs sampler. We 
constrained the computation to HapMap3 variants with MAF >1%, and used 1KG 
superpopulation samples (EUR, EAS, AFR or AMR) whose ancestry matched 
the discovery sample as the LD reference panel. We ran LDpred2-grid using the 
genome-wide option with the full LD matrix, and tested the proportion of causal 
variants from a sequence of 17 values equally spaced from 10−4 to 1.0 on the log 
scale. The proportion that maximized the R2 in the validation dataset was selected, 
and used in the independent testing dataset to calculate the final PRS and its 
performance metrics.

PRS-CS. PRS-CS19 is a Bayesian polygenic prediction method that infers posterior 
SNP effect sizes from summary statistics using a continuous shrinkage prior, 
which is robust to varying genetic architectures, accurate in LD modeling and 
computationally efficient. PRS-CS has one hyperparameter—the global shrinkage 
parameter—which models the overall sparseness of the genetic architecture. We 
used default parameter settings and the precalculated 1KG LD reference panel 
(EUR, EAS, AFR or AMR) that matched the ancestry of the discovery sample, 
which was constructed for HapMap3 variants with MAF >1%. The global 
shrinkage parameter among 10−6, 10−4, 10−2 and 1.0 that maximized the R2 in the 
validation dataset was selected, and used in the independent testing dataset to 
calculate the final PRS and its performance metrics.

PT-meta. PT-meta applies PT to the meta-GWAS that combines all discovery 
summary statistics through an inverse-variance-weighted fixed-effect 
meta-analysis. We used the same clumping parameters and screened the same list 
of P value thresholds as the PT method. The 1KG LD reference panel (EUR, EAS, 
AFR or AMR) that had matched ancestry with each of the discovery samples was 
in turn used for clumping, producing multiple sets of clumped variants. The best 
combination of the LD reference panel and the P value threshold that maximized 
the R2 in the validation dataset was selected, and used in the independent testing 
dataset to calculate the final PRS and its performance metrics.

PT-mult, LDpred2-mult and PRS-CS-mult. PT-mult26, LDpred2-mult and 
PRS-CS-mult apply PT, LDpred2 and PRS-CS to each discovery summary statistics 
separately. The most predictive PRS derived from each discovery sample were then 
used to fit a linear regression in the validation dataset:

y ∼ w1PRS1 + w2PRS2 + · · · + wKPRSK,

where PRSk is the standardized PRS for population k, and wk is the corresponding 
regression coefficient. The optimal hyperparameter for each discovery sample and 
the estimated regression coefficients for the linear combination of standardized 
PRS were used in the independent testing dataset to calculate the final PRS 
and its performance metrics. We screened the same grid of hyperparameters 
for each method (that is, the P value threshold for PT, the proportion of causal 
variants for LDpred2 and the global shrinkage parameter for PRS-CS). The 1KG 
superpopulation samples (EUR, EAS, AFR or AMR) whose ancestry matched the 
discovery sample were used as the LD reference panel.

Simulations. Genotypes. We simulated individual-level genotypes of EUR, EAS 
and AFR populations using HAPGEN2 (ref. 37) with ancestry-matched 1KG Phase 
3 (ref. 36) superpopulation samples as the reference panel. We grouped CEU, IBS, 
FIN, GBR and TSI into the EUR superpopulation, CDX, CHB, CHS, JPT and 
KHV into the EAS superpopulation, and ACB, ASW, LWK, MKK and YRI into the 
AFR superpopulation. To calculate the genetic map (cM) and recombination rate 
(cM/Mb) for each superpopulation, we downloaded the maps and rates for their 
constituent subpopulations (Data availability), linearly interpolated the genetic 
map and recombination rate at each position (Code availability), and averaged 
the genetic maps and recombination rates across the subpopulations in each 
superpopulation. We simulated 320,000 EUR samples, 100,000 EAS samples and 
100,000 AFR samples, and confirmed that the allele frequencies and LD patterns 
of the simulated genotypes were highly similar to those of the 1KG reference 
panels. We note, however, that, although highly scalable, genotypes simulated by 
HAPGEN2 may not fully capture the complex population structure within and 
across ancestry groups. We saved 20,000 samples for each of the three populations 
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as the target dataset, which was split evenly into validation and testing datasets. 
The remaining samples served as the discovery dataset, which was used to produce 
GWAS of varying sample sizes. We constrained the simulations to 1,296,253 
HapMap3 variants with MAF >1% in at least one of the EUR, EAS and AFR 
populations, and removed triallelic and strand ambiguous variants.

Phenotypes. In our primary simulation, we randomly sampled 1% of the HapMap3 
variants as causal variants. We assumed that causal variants are shared across the 
three populations and simulated their per-allele effect sizes using a multivariate 
normal distribution with the correlation between populations set to 0.7. For 
each population, we used a normally distributed random variable to model the 
nongenetic component such that the heritability was fixed at 50%. The phenotype 
was then generated in each population using y = Xβ + ϵ, where X was the 
genotype matrix, β was the simulated per-allele effect size vector in which causal 
variants had nonzero effects (and the rest of the variants had zero effect sizes) and 
ϵ was the simulated nongenetic component. The simulation was repeated 20 times. 
GWAS was performed on 100,000 EUR, 20,000 EAS and 20,000 AFR discovery 
samples, respectively, using PLINK 1.9 (ref. 45).

We conducted a series of secondary simulations to assess the robustness 
of PRS-CSx in a wide range of settings: (1) varying polygenicity of the genetic 
architecture (0.1% versus 1% versus 10% of causal variants); (2) varying 
cross-population genetic correlations (rg = 0.4 versus rg = 0.7 versus rg = 1.0);  
(3) varying sample sizes of the discovery GWAS (50,000 EUR + 10,000 non-EUR; 
100,000 EUR + 20,000 non-EUR; 200,000 EUR + 40,000 non-EUR; 300,000 EUR 
+ 60,000 non-EUR); (4) varying ratios of the EUR versus non-EUR GWAS sample 
sizes (120,000 EUR + 0 non-EUR; 100,000 EUR + 20,000 non-EUR; 80,000 EUR + 
40,000 non-EUR; 60,000 EUR + 60,000 non-EUR); (5) varying SNP heritability of 
the simulated trait in different populations (h2 = 0.5 in EUR + h2 = 0.5 in non-EUR; 
h2 = 0.5 in EUR + h2 = 0.25 in non-EUR; h2 = 0.25 in EUR + h2 = 0.5 in non-EUR); 
(6) varying proportions of shared causal variants across populations (100% versus 
70% versus 40%); (7) allele frequency and LD dependent genetic architecture: 
instead of sampling per-allele SNP effect sizes from a multivariate normal 
distribution with homogeneous variance across the genome, we assumed that the 
variance of SNP j in population k is proportional to 

[

2fjk
(

1 − fjk
)]α

ℓ
α
jk, where fjk 

and ℓjk are the MAF and LD score of SNP j in population k, respectively. When  
α < 0, variants with lower MAF and variants located in lower LD regions tend to 
have larger effects on the trait46–48. We used α = −0.25 in this set of simulations, 
which has been estimated empirically to reflect the relationship between effect 
size and allele frequency46. This α value produced approximately a fourfold 
difference in the variance of per-allele effect size for both high-frequency versus 
low-frequency variants and high-LD versus low-LD variants included in the 
simulations; (8) varying hyperparameters in the continuous shrinkage prior 
(a = 0.5, b = 0.5 versus a = 1.0, b = 0.5 versus a = 1.5, b = 0.5 versus a = 1.0, b = 1.0).

UKBB, BBJ, PAGE and TWB analysis. Discovery data: we downloaded GWAS 
summary statistics from UKBB28, BBJ29 and PAGE31 (Data availability). We 
selected 33 quantitative traits that were available in both UKBB and BBJ, among 
which 14 were also available in PAGE (Supplementary Table 10). We used 1KG 
EUR and EAS samples as the LD reference panel for UKBB and BBJ summary 
statistics, respectively, when constructing PRS. The PAGE study comprised largely 
African American and Hispanic/Latino samples, for which we used the 1KG AMR 
reference panel as an approximation in the PRS analyses. UKBB target data: all 
UKBB target samples are unrelated UKBB individuals that are nonoverlapping 
and unrelated with the UKBB GWAS sample. To perform population assignment 
on the UKBB samples, we selected variants that are available in both 1KG and 
the UKBB genotyped dataset, and removed variants meeting one of the following 
criteria in 1KG: (1) strand ambiguous; (2) located on sex chromosomes or in 
long-range LD regions (chr6: 25–35 Mb; chr8: 7–13 Mb); (3) call rate <0.98; and 
(4) MAF <0.05. We performed LD pruning on the remaining variants in 1KG 
using PLINK45 (–indep-pairwise 100 50 0.2), yielding 149,501 largely independent, 
high-quality common variants. We then conducted PC analysis using these 
LD-pruned SNPs in 1KG samples, and projected SNP loadings onto UKBB samples 
with the scale appropriately adjusted. Using 1KG as the reference, we trained a 
random forest model to predict the five superpopulation labels (AFR, AMR, EAS, 
EUR, SAS) using the top six PCs, and applied the trained random forest classifier 
to UKBB samples to predict the genetic ancestry of each UKBB participant. We 
retained UKBB samples that can be assigned to one of the superpopulations with 
a predicted probability >90%. For each population in UKBB, we selected a set 
of unrelated individuals and performed sample-level quality control (QC) by 
removing individuals meeting one of the following criteria: (1) mismatch between 
self-reported and genetically inferred sex; (2) missingness or heterozygosity 
outliers and (3) sex chromosome aneuploidy. For the validation and testing of PRS 
in the EUR population, we used non-British EUR samples that are unrelated to 
the White British samples included in Neale Lab UKBB GWAS. Last, we converted 
imputed dosage data into hard coded genotypes using PLINK 2.0 with default 
parameters (that is, dosage was rounded to the nearest hardcall when the distance 
was no greater than 0.1; otherwise a missing hardcall was saved), and performed 
variant-level QC in each target population by removing variants meeting one of 
the following criteria: (1) call rate <0.98; (2) MAF <0.01; (3) Hardy–Weinberg 

equilibrium test P value <10−10 and (4) imputation INFO score <0.8. The final 
target dataset included 7,507 AFR, 687 AMR, 2,181 EAS, 14,085 EUR and 8,412 
SAS individuals, with 12,886,200, 8,593,932, 6,506,126, 8,211,053 and 8,032,121 
variants, respectively. TWB target data: The TWB32,33 is a prospective cohort study 
of the Taiwanese population. Participants were 30–70 years old at recruitment. 
Among the 33 quantitative traits examined in UKBB, we identified 21 that were 
also available in TWB. We used 14,232 samples genotyped on the TWBv2 custom 
array and imputed against the 1KG samples, the same dataset used in the PRS 
analysis of our recent TWB quantitative trait GWAS study32, to evaluate the 
predictive performance of different polygenic prediction methods. Following the 
same sample-level and variant-level QC procedures used in the UKBB analysis, 
the final analytic sample included 10,149 unrelated individuals of EAS ancestry 
that had complete data across the 21 traits. Detailed information on the sample 
characteristics and collection of phenotypes can be found elsewhere32,33.

Heritability and cross-population genetic correlation. Heritability of each 
trait in UKBB, BBJ and PAGE was estimated using LD score regression49 with 
ancestry-matched LD reference panels. We calculated the cross-population genetic 
correlation between UKBB, BBJ and PAGE using POPCORN16 with default 
parameters. POPCORN requires the LD score49 and cross-covariance score as the 
input. We used the precomputed EUR–EAS scores (available from the POPCORN 
website), and computed EUR–AFR and EAS–AFR scores on 1KG Phase 3 samples 
using the ‘compute’ function provided by POPCORN.

Schizophrenia datasets. Schizophrenia data used in this study is summarized in 
Supplementary Table 16. PGC wave 2 schizophrenia GWAS summary statistics34 
were used as the European discovery dataset. Except for one cohort (TMIM1), 
EAS samples used as discovery and target datasets were described in Lam et al15. 
TMIM1 was recruited from multiple university hospitals and local hospitals 
in Japan. Patients were diagnosed according to the Diagnostic and Statistical 
Manual of Mental Disorders, 4th Edition (DSM-IV) with consensus from at least 
two experienced psychiatrists. All patients agreed to participate in the study and 
provided written informed consent. The study was approved by the Institutional 
Review Boards of the Tokyo Metropolitan Institute of Medical Science and all 
affiliated institutions. DNA samples were genotyped on the Illumina Infinium 
Global Screening Array-24 v.1.0 (GSA) BeadChip at the Broad Institute, using 
standard reagents and HTS workflow procedures. GWAS QC and imputation were 
performed using Ricopili50 with default parameters. When used as a target cohort, 
SNPs were further filtered by imputation INFO score <0.9 and MAF <0.01.

Ethics. Collection of the UKBB data was approved by the Research Ethics 
Committee of the UKBB. UKBB individual-level data used in the present 
work were obtained under application no. 32568. BBJ and PAGE: only publicly 
available GWAS summary statistics, without individual-level information, were 
used in this study. Collection of the TWB data was approved by the Ethics and 
Governance Council (EGC) of TWB and the Department of Health and Welfare, 
Taiwan (Wei-Shu-I-Tzu no.1010267471). TWB obtained informed consent from 
all participants for research use of the collected data. Access to, and use of, TWB 
data in the present work was approved by the EGC of TWB (approval number: 
TWBR10907-05) and the Institutional Review Board of National Health Research 
Institutes, Taiwan (approval number: EC1090402-E). Schizophrenia GWAS 
summary statistics of EUR and EAS ancestries are available via the Psychiatric 
Genomics Consortium, and do not contain any individual-level information. 
The following institutions provided ethics oversight for schizophrenia East Asian 
samples used in this work: Samsung Medical Center, Bio-X Institutes of Shanghai 
Jiao Tong University, Fujita Health University, Tokyo Metropolitan Institute of 
Medical Science, University Medical Center Utrecht, The University of Western 
Australia, The University of Indonesia, RIKEN Center for Integrative Medical 
Sciences, Nagoya University, Osaka University, Niigata University, Chonnam 
National University Hospital and Mass General Brigham (Protocols 2014P001342 
and 2011P002207). Informed consent and permission to share the data were 
obtained from all subjects, in compliance with the guidelines specified by the 
institutional review board of the recruiting center.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Publicly available data are available from the following sites: 1KG Phase 3 
reference panels: https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.
html; Genetic map for each subpopulation: ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/working/20130507_omni_recombination_rates; UKBB summary 
statistics: http://www.nealelab.is/uk-biobank (‘GWAS round 2’ was used in this 
study); BBJ summary statistics were downloaded from PheWeb: https://pheweb.
jp; PAGE summary statistics were downloaded from the GWAS Catalog: https://
www.ebi.ac.uk/gwas/downloads/summary-statistics; PGC wave 2 schizophrenia 
GWAS (49 EUR cohorts): https://www.med.unc.edu/pgc/download-results/; 
leave-one-out schizophrenia EAS summary statistics are available upon request 
to the Schizophrenia Working Group of the PGC (https://www.med.unc.edu/
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pgc/pgc-workgroups/schizophrenia/). These leave-one-out summary statistics 
are under controlled access per the data use limitation imposed by compliance, 
participant consent and/or national laws. Application to access such data requires 
a short research proposal that will go through review and approval process of 
the PGC. This process takes 2 weeks. Individual-level schizophrenia data of East 
Asian ancestry are available upon application to the Stanley Global Asia Initiatives: 
SGAI@broadinstitute.org. These data must be under controlled access due to the 
data use limitation imposed by the compliance, participant consent and national 
laws. Application to access such data requires a short research proposal that will be 
reviewed by principal investigator of the constituent study and, if necessary, by the 
respective ethic committee. The principal investigator review process takes 2 weeks. 
TWB data used in this study contain protected health information and are thus 
under controlled access. Application to access such data can be made to the TWB 
(https://www.twbiobank.org.tw/new_web_en/). Posterior SNP effect size estimates 
generated by PRS-CSx for the traits examined in this work: https://github.com/
getian107/PRScsx.

Code availability
The code used in this study is available from the following websites: PRS-CSx: https://
github.com/getian107/PRScsx (https://doi.org/10.5281/zenodo.5893746); PRS-CS: 
https://github.com/getian107/PRScs (https://doi.org/10.5281/zenodo.5893748); 
LDpred2: https://privefl.github.io/bigsnpr/articles/LDpred2; PRSice-2: https://www.
prsice.info; HAPGEN2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/
hapgen2.html; PLINK 1.9: https://www.cog-genomics.org/plink; PLINK 2.0: https://
www.cog-genomics.org/plink/2.0/; LD score regression: https://github.com/bulik/
ldsc; POPCORN: https://github.com/brielin/Popcorn; Interpolation of genetic maps: 
https://github.com/joepickrell/1000-genomes-genetic-maps; Population assignment: 
https://github.com/Annefeng/PBK-QC-pipeline.
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Extended Data Fig. 1 | Prediction accuracy of different polygenic prediction methods across different genetic architectures. Phenotypes were simulated 
using 0.1%, 1% or 10% of randomly sampled causal variants (shared across populations), a cross-population genetic correlation of 0.7, and SNP heritability 
of 50%. PRS were trained using 100 K EUR samples and 20 K non-EUR (EAS or AFR) samples. Numerical results are reported in Supplementary Table 2.
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Extended Data Fig. 2 | Prediction accuracy of different polygenic prediction methods across different cross-population genetic correlations. Phenotypes 
were simulated using 1% of randomly sampled causal variants (shared across populations), a cross-population genetic correlation of 0.4, 0.7 or 1.0, 
and SNP heritability of 50%. PRS were trained using 100 K EUR samples and 20 K non-EUR (EAS or AFR) samples. Numerical results are reported in 
Supplementary Table 3.
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Extended Data Fig. 3 | Prediction accuracy of different polygenic prediction methods across different discovery GWAS sample sizes. Phenotypes were 
simulated using 1% of randomly sampled causal variants (shared across populations), a cross-population genetic correlation of 0.7, and SNP heritability 
of 50%. PRS were trained using 50 K EUR and 10 K non-EUR (EAS or AFR) samples, 100 K EUR and 20 K non-EUR samples, 200 K EUR and 40 K non-EUR 
samples, or 300 K EUR and 60 K non-EUR samples. Numerical results are reported in Supplementary Table 4.
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Extended Data Fig. 4 | Prediction accuracy of different polygenic prediction methods across different ratios of eUR vs. non-eUR GWAS sample sizes. 
Phenotypes were simulated using 1% of randomly sampled causal variants (shared across populations), a cross-population genetic correlation of 0.7, and 
SNP heritability of 50%. PRS were trained using 120 K EUR samples without non-EUR samples, 100 K EUR and 20 K non-EUR (EAS or AFR) samples, 80 K 
EUR and 40 K non-EUR samples, or 60 K EUR and 60 K non-EUR samples. Numerical results are reported in Supplementary Table 5.
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Extended Data Fig. 5 | Prediction accuracy of different polygenic prediction methods across different SNP heritability. Phenotypes were simulated using 
1% of randomly sampled causal variants (shared across populations) and a cross-population genetic correlation of 0.7. SNP heritability was fixed at 50% in 
each population, 50% in the EUR population and 25% in the non-EUR population, or 25% in the EUR population and 50% in the non-EUR population. PRS 
were trained using 100 K EUR samples and 20 K non-EUR (EAS or AFR) samples. Numerical results are reported in Supplementary Table 6.
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Extended Data Fig. 6 | Prediction accuracy of different polygenic prediction methods across different proportions of shared causal variants between 
populations. Phenotypes were simulated using 1% of randomly sampled causal variants. 100%, 70% or 40% of the causal variants were shared across 
populations. Shared causal variants had a cross-population genetic correlation of 0.7. SNP heritability was fixed at 50%. PRS were trained using 100 K EUR 
samples and 20 K non-EUR (EAS or AFR) samples. Numerical results are reported in Supplementary Table 7.
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Extended Data Fig. 7 | Prediction accuracy of different polygenic prediction methods when SNP effect sizes are minor allele frequency (MAF) and 
linkage disequilibrium (LD) dependent. Phenotypes were simulated using 1% of randomly sampled causal variants (shared across populations), a 
cross-population genetic correlation of 0.7, and SNP heritability of 50%. SNP effect sizes were dependent on MAF and LD scores such that SNPs with 
lower MAF and located in lower LD regions tended to have larger effect sizes. PRS were trained using 100 K EUR samples and 20 K non-EUR (EAS or AFR) 
samples. Numerical results are reported in Supplementary Table 8.
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Extended Data Fig. 8 | Relative prediction accuracy for quantitative traits across target populations. Relative prediction performance for single-discovery 
and multi-discovery PRS construction methods using discovery GWAS summary statistics a, from UKBB and BBJ, across 33 traits, in different UKBB target 
populations (EUR, EAS and AFR); b, from UKBB and BBJ, across 21 traits, in the Taiwan Biobank (TWB); c, from UKBB, BBJ and PAGE, across 14 traits, 
in different UKBB target populations (EUR, EAS and AFR). Each data point shows the relative increase of prediction performance, defined as R2/R2

PRS-CS 

(UKBB)-EUR - 1, in which R2
PRS-CS (UKBB)-EUR is the R2 of the trait in the EUR population using PRS-CS trained on the UKBB GWAS summary statistics. In UKBB 

target populations (panels a and c), R2 were averaged across 100 random splits of the target samples into validation and testing datasets. The crossbar 
indicates the median of the relative increase of predictive performance across the traits examined. ‘median N’ indicates the median sample size across the 
respective discovery GWAS.
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Extended Data Fig. 9 | Trace plots and autocorrelation functions (ACFs) for assessing the convergence and mixing of the Gibbs sampler used in 
PRS-CSx. Left panels: Trace plots, after discarding the burn-in iterations and thinning the Markov chain by a factor of 5, for the posterior effects of rs7412 
on low-density lipoprotein cholesterol when integrating UKBB, BBJ and PAGE GWAS summary statistics using PRS-CSx. Right panels: The autocorrelation 
functions (ACFs) for the traces shown on the left.
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