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Polygenic risk scores (PRSs) can identify individuals at elevated 
risk of complex diseases, providing opportunities for preven-
tive action1–6. However, many studies have shown that PRSs 

based on European training data attain lower accuracy when applied 
to populations of non-European ancestry7–26. This loss of accuracy 
is primarily driven by linkage disequilibrium (LD) differences12–15, 
allele frequency differences (including population-specific 
SNPs)13,14,27 and causal effect-size differences12–14,28–31, although 
differences in heritability also play a minor role13,14,32. PRSs based 
on non-European training data do not suffer from these limita-
tions, but are currently limited by much smaller training sample 
sizes1,12–15,21,33. The development of new methods to reduce this gap 
in cross-population PRS accuracy has the potential to ameliorate 
health disparities13.

In the present study, we propose PolyPred, which linearly com-
bines two complementary predictors derived from European 
training data: (1) PolyFun-pred, a new predictor that circumvents 
LD differences by applying genome-wide, functionally informed 
fine-mapping34,35 to precisely estimate causal effects (instead of tag-
ging effects); and (2) BOLT-LMM36,37, a published predictor that 
analyzes all loci jointly and can capture all signals in extremely 
polygenic loci. BOLT-LMM requires individual-level training 
data. If individual-level training data are not available, we propose 
two analogous methods: (1) PolyPred-S, which linearly combines 
PolyFun-pred with SBayesR38, and (2) PolyPred-P, which linearly 

combines PolyFun-pred with PRS-CS39. Recommendations for 
when to use PolyPred, PolyPred-S or PolyPred-P are provided below.

In the special case where a large (for example, n ≥ 50,000) 
non-European training sample exists from the target population 
(or a closely related population), we propose PolyPred+, a polygenic 
prediction method that leverages both European and non-European 
training data. PolyPred+ linearly combines (1) PolyFun-pred, (2) 
BOLT-LMM and (3) BOLT-LMM-pop, which is obtained by apply-
ing BOLT-LMM to the non-European training data, addressing 
minor allele frequency (MAF) differences and causal effect-size 
differences. If individual-level training data are not available, we 
propose the alternative methods PolyPred-S+ and PolyPred-P+, 
which replace BOLT-LMM with either SBayesR or PRS-CS, respec-
tively. Recommendations for when to use PolyPred+, PolyPred-S+ or 
PolyPred-P+ are provided below.

We compared PolyPred and PolyPred+ (and their summary 
statistics-based analogs) with state-of-the-art polygenic prediction 
methods via simulations and analyses of 49 diseases and complex 
traits in four populations from the UK Biobank40, Biobank Japan41 
and Uganda-APCDR42,43. We conclude that PolyPred and its sum-
mary statistics-based analogs substantially increase cross-population 
polygenic prediction accuracy, and that PolyPred+ and its summary 
statistics-based analogs further increase cross-population predic-
tion accuracy in the special case where non-European training data 
are available in large sample size.
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Polygenic risk scores suffer reduced accuracy in non-European populations, exacerbating health disparities. We propose 
PolyPred, a method that improves cross-population polygenic risk scores by combining two predictors: a new predictor that 
leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing linkage dis-
equilibrium differences, and BOLT-LMM, a published predictor. When a large training sample is available in the non-European 
target population, we propose PolyPred+, which further incorporates the non-European training data. We applied PolyPred to 
49 diseases/traits in four UK Biobank populations using UK Biobank British training data, and observed relative improvements 
versus BOLT-LMM ranging from +7% in south Asians to +32% in Africans, consistent with simulations. We applied PolyPred+ 
to 23 diseases/traits in UK Biobank east Asians using both UK Biobank British and Biobank Japan training data, and observed 
improvements of +24% versus BOLT-LMM and +12% versus PolyPred. Summary statistics-based analogs of PolyPred and 
PolyPred+ attained similar improvements.

NATuRe GeNeTicS | VOL 54 | APRIL 2022 | 450–458 | www.nature.com/naturegenetics450

mailto:oweissbrod@hsph.harvard.edu
mailto:aprice@hsph.harvard.edu
http://orcid.org/0000-0001-9860-0626
http://orcid.org/0000-0001-5165-4408
http://orcid.org/0000-0001-9886-877X
http://orcid.org/0000-0001-7954-8383
http://orcid.org/0000-0002-0311-8472
http://orcid.org/0000-0003-0241-3522
http://orcid.org/0000-0003-3864-9828
http://orcid.org/0000-0002-2971-7975
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-022-01036-9&domain=pdf
http://www.nature.com/naturegenetics


ArticlesNATUrE GENETicS

Results
Overview of methods. PolyPred combines two complementary 
predictors: PolyFun-pred and BOLT-LMM (Table 1 and Fig. 1a). 
PolyFun-pred is a new predictor that leverages genome-wide, func-
tionally informed fine-mapping34,35 to estimate posterior mean 
causal effects (rather than tagging effects; Supplementary Note) 
for all SNPs with European MAF ≥ 0.1% (18 million SNPs in the 
present study) by applying PolyFun + SuSiE35 to European training 
data across 2,763 overlapping 3-Mb loci. Leveraging fine-mapped 
posterior mean causal effects for cross-population polygenic pre-
diction aims to address LD differences between populations. 
BOLT-LMM36,37 is a published predictor that estimates posterior 
mean tagging effects of common SNPs (1.2 million HapMap 3 
SNPs44 in the present study) using European individual-level train-
ing data. Combining PolyFun-pred with BOLT-LMM is advanta-
geous because they have complementary advantages: PolyFun-pred 
estimates causal effects rather than tagging effects. BOLT-LMM esti-
mates tagging effects, but it analyzes all loci jointly and can poten-
tially capture all signals in extremely polygenic loci (Methods).

In the special case where a large training sample is available 
in the target population (or a closely related population), we pro-
pose PolyPred+, which combines three complementary predictors: 
PolyFun-pred, BOLT-LMM and BOLT-LMM-pop (Table 1 and Fig. 
1b); BOLT-LMM-pop refers to application of BOLT-LMM to com-
mon SNPs (1.2 million HapMap 3 SNPs in the present study) using 
training data from the non-European target population, addressing 
both MAF and causal effect-size differences.

PolyPred computes linear combinations of the estimated effect 
sizes of their constituent predictors:

β̂i
PolyPred(+)

=

∑

j
w j ̂βj

i, (1)

where i indexes SNPs, j indexes the constituent predictors 
(PolyFun-pred and BOLT-LMM for PolyPred; PolyFun-pred, 
BOLT-LMM and BOLT-LMM-pop for PolyPred+), β̂i

PolyPred(+)

 is the 
PolyPred+ per-allele effect size of SNP i, w j is the method-specific 
weight and ̂β j

i is the per-allele effect size of SNP i for method j (or 0 
if SNP i was not considered by method j). Predicted phenotypes are 
computed by applying effect sizes to target genotypes:

ŷ =
∑

i
xi β̂i

PolyPred(+)
, (2)

where ŷ is the predicted phenotype of an individual from the target 
population and xi is the number of minor alleles of SNP i carried by 
the individual. The mixing weights w j in equation (1) are estimated 
via non-negative least squares regression using a small number of 
training individuals from the target population (500 in the present 
study), regressing true phenotypes on a linear combination of the 
constituent predictors (which are computed as in equation (2)).

PolyPred requires individual-level training data for its 
BOLT-LMM component. If only summary statistics (and summary 
LD information) are available, we propose two analogous methods 
(Table 1): (1) PolyPred-S, which linearly combines PolyFun-pred 
and SBayesR38; and (2) PolyPred-P, which linearly combines 
PolyFun-pred and PRS-CS39. We also propose the analogous methods 
PolyPred-P+ and PolyPred-S+ (Table 1). Further details of PolyPred 
and PolyPred+ (and their summary statistics-based analogs) are 
provided in Methods; we have publicly released open-source soft-
ware implementing these methods (Code availability).

We evaluate prediction accuracy for each method and target 
population using relative R2, defined as the R2 obtained in the tar-
get non-European population (after correcting for covariates and 
potential confounders; Methods) divided by the R2 obtained by 
BOLT-LMM in UK Biobank non-British Europeans (employing 
the same correction), using the same training data for the numera-
tor and the denominator. This quotient transforms the prediction 
accuracies from an absolute scale to a scale of relative improvement 
(versus the BOLT-LMM predictor in the UK Biobank non-British 
European target population), which is invariant to factors such as 
training sample size and trait heritability. For disease traits, we addi-
tionally evaluated the area under the receiving operating character-
istic. We provide further details in Methods. We compare PolyPred 
and PolyPred+ (and their summary statistics-based analogs) with 
four published methods: LD pruning + P-value thresholding 
(P + T)45,46, BOLT-LMM36,37, SBayesR38 and PRS-CS39 (Table 1).

Our recommendation for which version of PolyPred to use (Table 
1) depends on three factors: (1) whether individual-level training 
data are available; (2) the size and consistency of matched ancestry 
of the LD reference panel (if individual-level training data are not 
available); and (3) whether non-European training data are available. 
Our results for the underlying constituent methods are summarized 
in Table 2 and our recommendations are summarized in Fig. 2.

Simulations with in-sample LD. We compared PolyPred, 
PolyPred-S and PolyPred-P with P + T, BOLT-LMM, SBayesR and 

Table 1 | Summary of main methods evaluated

Method constituent methods SNP set Training data Fine-mapped 
effect sizes

Summary 
statistics

Reference

P + T – All (18 million) Eur No Yes 45,46

BOLT-LMM – HapMap 3 (1.2 million) Eur No No 36,37

SBayesR – HapMap 3 (1.2 million) Eur No Yes 38

PRS-CS – HapMap 3 (1.2 million) Eur No Yes 39

PolyPred PolyFun-pred, BOLT-LMM All (18 million) Eur Yes No This work

PolyPred-S PolyFun-pred, SBayesR All (18 million) Eur Yes Yes This work

PolyPred-P PolyFun-pred, PRS-CS All (18 million) Eur Yes Yes This work

PolyPred+ PolyFun-pred, BOLT-LMM, 
BOLT-LMM-pop

All (18 million) Eur + target pop Yes No This work

PolyPred-S+ PolyFun-pred, SBayesR, SBayesR-pop All (18 million) Eur + target pop Yes Yes This work

PolyPred-P+ PolyFun-pred, PRS-CS, PRS-CS-pop All (18 million) Eur + target pop Yes Yes This work

For each method, we report its constituent methods (or ‘–’ for individual methods), the set of SNPs analyzed in model training using UK Biobank training data (and its size when restricted to imputed UK 
Biobank SNPs with European MAF ≥ 0.1% and INFO score ≥ 0.6), the training data analyzed, whether it incorporates fine-mapped effect sizes (as opposed to tagging effect sizes), whether it can work with 
summary statistics and the corresponding reference. Eur, European; [Method]-pop, Method applied to training data from non-European target population; target pop, non-European target population.
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PRS-CS via simulations, using real genotypes or in-sample LD 
from the UK Biobank40. We trained each method using 337,491 
unrelated British-ancestry individuals40 and computed predic-
tions in four target populations: non-British Europeans, south 
Asians, east Asians and Africans. We estimated mixing weights for 
PolyPred, PolyPred-S and PolyPred-P using 500 individuals from 
the target population. We evaluated prediction accuracy using 
held-out individuals from each target population that were not 
included in the training sets: 42,000 non-British Europeans, 7,700 
south Asians, 900 east Asians and 6,200 Africans. We computed 
PRS using 250,963 MAFs ≥ 0.1% SNPs with INFO score ≥ 0.6 on  
chromosome 22.

Generative trait architectures were specified as follows: we simu-
lated traits with polygenicity (genome-wide proportion of causal 
SNPs) either 0.1% (less polygenic) or 0.3% (more polygenic) and 
heritability = 5%. We specified prior causal probabilities for each 
SNP in proportion to per-SNP heritabilities, which we generated for 
each SNP based on its British LD, MAF and functional annotations, 
using the baseline-LF model47. For each causal SNP, we sampled 
ancestry-specific causal effect sizes from a multivariate normal 
distribution assuming cross-population genetic correlations of 0.8 
(refs. 13,30). Other parameter settings were explored in secondary 
analyses (see below).

We computed relative R2 for each method, target population and 
trait architecture, averaged across 100 simulations. In addition to the 
simulations with in-sample LD described below, we also performed  

simulations with reference panel LD (Supplementary Note; see also 
Table 2). Further details of the simulation framework are provided 
in Methods.

The simulation results are reported in Fig. 3 and Supplementary 
Table 1 (see also Table 2). PolyPred was the most accurate method 
in each target population, with relative improvements versus 
BOLT-LMM (respectively P values for improvement) ranging from 
+13% in non-British Europeans (P < 10−16) to +65% in Africans 
(P < 10−16) for the less polygenic architecture, and from +2% in 
non-British Europeans (P = 0.0001) to +17% in Africans (P = 10−8) 
for the more polygenic architecture. PolyPred-S and PolyPred-P 
performed slightly worse than PolyPred, but were substantially and 
significantly more accurate than their corresponding constituent 
methods. Among the remaining methods, BOLT-LMM was consis-
tently the most accurate and P + T the least accurate method, far 
underperforming the other methods (despite its widespread recent 
use11,13–18,23,31,48–52). We note that the higher accuracy of BOLT-LMM 
versus SBayesR and PRS-CS does not imply that BOLT-LMM is a 
superior method, because BOLT-LMM analyzes individual-level 
training data whereas SBayesR and PRS-CS analyze summary 
statistics.

We additionally performed many secondary analyses to investi-
gate the sensitivity of the results to the simulation parameters, the 
SNP set and the functional annotations, and to evaluate the com-
putational cost and memory cost of each method (Supplementary 
Note and Supplementary Tables 1 and 2).

PolyFun-pred effect sizes

PolyFun-pred effect sizes

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000) BOLT-LMM effect sizes

PolyPred

PolyFun-pred

Small training sample
from target cohort (n = 500)

PolyPred effect sizes

BOLT-LMM

Large European sample
(n > 100,000)

BOLT-LMM effect sizes

Large non-European
sample (n > 100,000)

BOLT-LMM-pop

PolyPred+

a

b

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM

βPolyFun-pred

βBOLT-LMM-pop

ω1βBOLT-LMM

+ ω2βPolyFun-pred

ω1βBOLT-LMM

+ ω2βPolyFun-pred

+ ω3βBOLT-LMM-pop

Fig. 1 | Overview of PolyPred and PolyPred+. a, Overview of PolyPred. PolyPred linearly combines the effect sizes of BOLT-LMM ( βBOLT-LMM) and 
PolyFun-pred ( βPolyFun-pred) (trained using European training data). It uses a small training sample from the target population to estimate mixing weights 
(ω1, ω2) for the constituent methods. b, Overview of PolyPred+. PolyPred+ linearly combines the effect sizes of BOLT-LMM ( βBOLT-LMM), PolyFun-pred 
( βPolyFun-pred) (trained using European training data) and BOLT-LMM-pop ( βBOLT-LMM-pop) (trained using non-European training data from the target 
population). It uses a small training sample from the target population to estimate mixing weights (ω1, ω2, ω3) for the constituent methods. PolyPred-S and 
PolyPred-P (respectively, PolyPred-S+ and PolyPred-P+) replace all instances of BOLT-LMM with SBayesR or PRS-CS, respectively.
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We conclude that PolyPred and its summary statistics-based 
analogs are more accurate than BOLT-LMM, SBayesR, PRS-CS and 
P + T, with small but significant improvements versus BOLT-LMM 
in Europeans and substantial improvements in Africans.

PRS in four UK Biobank populations using British training data. 
We applied PolyPred and its summary statistics-based analogs to 
49 diseases and complex traits from the UK Biobank, analyzing 
four target populations (Methods and Supplementary Table 3). 
As in our simulations, we used UK Biobank British training data 
(average n = 325,000) to estimate SNP effect sizes, used 500 addi-
tional individuals from the target population to estimate mixing 
weights, evaluated prediction accuracy using individuals from each 
of the four target populations that were not included in the training 
data—42,000 non-British Europeans, 7,700 south Asians, 900 east 
Asians and 6,200 Africans—and compared PolyPred and its sum-
mary statistics-based analogs to P + T, BOLT-LMM, SBayesR and 
PRS-CS. We meta-analyzed relative R2 across traits by restricting 

to seven well-powered, independent complex traits from the UK 
Biobank40 (|rg| < 0.3; Methods and Supplementary Table 3) that were 
also available in Biobank Japan and in Uganda-APCDR (see below). 
We have publicly released SNP effect sizes used for prediction for 
each of the four methods (Data availability).

We computed relative-R2 for each method and target popula-
tion, and the results are summarized in Fig. 4 and provided in 
Supplementary Tables 4–6 (see also Table 2). Among the published 
methods, BOLT-LMM attained the highest prediction accuracy 
in all target populations (differences between BOLT-LMM and 
SBayesR were small and not statistically significant). P + T was 
much less accurate than the other methods (despite its widespread 
recent use11,13–18,23,31,48–52), suffering relative losses of 37–50% versus 
BOLT-LMM. We thus used BOLT-LMM as a benchmark.

Across all seven methods, PolyPred attained the highest predic-
tion accuracy in each target population. Improvements in average 
relative R2 of PolyPred versus BOLT-LMM were equal to +7.5% in 
non-British Europeans (P = 0.05), +6.8% in south Asians (P = 0.02), 

Table 2 | Summary of the relative performance of constituent PRS methods

LD BOLT -LMM SBayesR PRS-cS Figure(s)/Table(s)

Individual-level data (UKB, n = 337,000) ✓✓ ✓ ✓ Figs. 3, 4 and 6

In-sample LD (UKB, n = 337,000) – ✓✓ ✓ Figs. 3, 4 and 6

Very large unmatched LD (UKB, n = 337,000) – ✓ ✓✓ Extended Data Fig. 1

Small unmatched LD (1000G, n = 489) – ✗ ✓✓* Supplementary Tables 4–6

For each of three constituent PRS methods (BOLT-LMM, SBayesR and PRS-CS), we report its relative performance in prediction in UK Biobank (UKB) non-British Europeans under various settings; we also 
provide links to the corresponding figure(s)/table(s). ✓✓, the method is significantly more accurate than the second-best method in the same row and combining this method with PolyFun-pred increases 
prediction accuracy; ✓✓*, the method is significantly more accurate than the second-best method in the same row and combining this method with PolyFun-pred does not increase prediction accuracy; ✓, 
the method is significantly less accurate than the best method in the same row, but is significantly more accurate than P + T; ✗, the method is not significantly more accurate than P + T; –, the method is not 
applicable, because it requires individual-level data. For individual-level data, the difference between BOLT-LMM and the second-best method was significant in simulations but non-significant in real-trait 
analyses. For In-sample LD, the difference between SBayesR and PRS-CS was significant in simulations but non-significant in real-trait analyses. For very large unmatched LD (a probable scenario when 
analyzing summary statistics from a meta-analysis of many cohorts), we performed real-trait analyses only, because simulations would have required another very large individual-level dataset in addition 
to UK Biobank (Supplementary Note). For small unmatched LD, we performed both simulations and real-trait analyses but report results of real-trait analyses, which we believe to be most reflective of 
real-life settings (in simulations, SBayesR was significantly more accurate than PRS-CS; Supplementary Note). 1000G, 1000 Genomes project. Results for non-European target populations from UK Biobank 
were similar, although some of the differences were not statistically significant due to smaller prediction accuracies and sample sizes. We have facilitated the use of very large LD reference panels for 
European training data by publicly releasing summary LD information for n = 337,000 British-ancestry UK Biobank samples across 18 million SNPs (Data availability).

European training data
a

European training data + non-European training data
b

Is individual-level training data available?

Is a very large LD reference panel
(n > 50,000) available?

PRS-CS PolyPred-P PolyPred-S PolyPred

Does the LD reference panel population
closely match the GWAS population?

Yes

No

No

Yes

No Yes

Is individual-level training data available?

Is a very large LD reference panel
(n > 50,000) available?

PRS-CS PolyPred-P+ PolyPred-S+ PolyPred+

Does the LD reference panel population
closely match the GWAS population?

Yes

No

No

Yes

No Yes

Fig. 2 | Recommendations for the application of PolyPred, PolyPred+ and related methods. a, Flowchart of recommendations when only European training 
data are available. b, Flowchart of recommendations when both European and non-European training data are available. We note that, when working with 
summary statistics from a meta-analysis of many cohorts, there is typically no LD reference panel that closely matches the GWAS population. Also, it is 
possible that the answers to the flowchart questions are different for European versus non-European training data, in which case the recommendation 
would be to use a hybrid method based on the answers to each flowchart in turn (for example, PolyFun-pred + BOLT-LMM + PRS-CS-pop; not listed in 
Table 1). For both a and b, we recommend training PolyFun-pred using a very large LD reference panel (for example, n = 337,000 UK Biobank British) with 
a dense SNP set (for example, 8 million SNPs). We have facilitated this by publicly releasing summary LD information for n = 337,000 British-ancestry UK 
Biobank samples across 18 million SNPs (Data availability).
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+11% in east Asians (P = 0.12) and +32% in Africans (P = 0.02). The 
larger improvement in Africans reflects the larger LD differences 
versus British training data, due to earlier divergence times13,14,53. 
The lack of statistical significance in east Asians reflects the low 
power to detect significant differences in very small target samples. 
PolyPred-S and PolyPred-P were consistently the second and third 
most accurate methods, respectively, with statistically significant 
improvements versus their constituent methods. We additionally 
verified that PolyPred was well calibrated (that is, regressing the true 
phenotype on the predicted phenotype yielded a slope of 1) in all 
target populations, whereas the alternative methods were not always 
well calibrated (Supplementary Tables 4–6 and Supplementary 
Note). Despite the improvements attained by PolyPred, the reduc-
tions in prediction accuracy in non-European populations remained 
significant (P < 0.002), with meta-analyzed absolute R2 = 0.17 in 
non-British Europeans, 0.11 in south Asians. 0.093 in east Asians 
and 0.053 in Africans (Methods and Supplementary Tables 4 and 5).

As a secondary analysis, we meta-analyzed the results of each 
method across three independent diseases: type 2 diabetes, asthma 
and all autoimmune diseases (Methods); these diseases were not 
included in our primary meta-analyses due to low heritabilities. 
PolyPred attained the highest prediction accuracy for each target 
population and each disease, except for east Asians (where the s.e. 
was large due to the small sample size) and for type 2 diabetes in 
non-British Europeans (where BOLT-LMM performed slightly but 
non-significantly better) (Supplementary Table 4). We performed 
additional secondary analyses to evaluate the impact of the LD 
reference panel and the SNP set on prediction accuracy, to evalu-
ate additional methods, and to evaluate the results when modify-
ing the parameters of PolyPred and the other evaluated methods 
(Supplementary Note and Supplementary Tables 4–7).

We conclude that PolyPred and its summary statistics-based 
analogs substantially increase cross-population polygenic predic-
tion accuracy versus published methods (with a particularly large 
improvement in Africans), consistent with simulations. However, 
there remains a large gap in cross-population polygenic prediction 
accuracy compared with Europeans.

PRS using ENGAGE meta-analysis training data. We sought 
to analyze training data consisting of summary statistics for real 
traits from a meta-analysis of many European cohorts, for which 

in-sample LD is generally not available. We analyzed 8.1 million 
meta-analyzed summary statistics from the European Network for 
Genetic and Genomic Epidemiology (ENGAGE) consortium54–56 
for four traits (body mass index (BMI), waist:hip ratio (adjusted for 
BMI), total cholesterol and triglycerides; average n = 61,365), and 
evaluated the prediction accuracy using the same four UK Biobank 
populations analyzed previously. For each method, we used an 
LD reference panel based on UK Biobank British individuals; we 
emphasize that, unlike the other primary analyses, the LD reference 
panel was mis-specified, because it was not based on in-sample LD. 
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Fig. 3 | cross-population PRS results for simulated uK Biobank traits using in-sample LD. We report average prediction accuracy (relative R2; see text) for 
PRSs trained in UK Biobank British samples (n = 337,000) and applied to four UK Biobank target populations across 100 simulated traits with less polygenic 
(0.1% of SNPs causal; left panel) or more polygenic (0.3% of SNPs causal; right panel) architectures. Target population sample sizes are indicated in 
parentheses; PolyPred and its summary statistics-based analogs used 500 additional training samples from each target population to estimate mixing 
weights. Asterisks above each bar denote statistical significance of the difference versus BOLT-LMM, with black asterisks denoting an advantage and red 
asterisks a disadvantage (*P < 0.05; **P < 0.001). P values were computed using a two-sided Wald’s test and were not adjusted for multiple comparisons. 
Error bars denote s.e. Numerical results, absolute prediction accuracies (R2) and P values of relative improvements versus BOLT-LMM are reported in 
Supplementary Table 1.
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Fig. 4 | cross-population PRS results for real uK Biobank traits. We 
report average prediction accuracy (relative R2; see text), meta-analyzed 
across seven well-powered, independent traits, for PRSs trained in UK 
Biobank British samples (average n = 325,000) and applied to four UK 
Biobank target populations. Target population sample sizes are indicated in 
parentheses; PolyPred and its summary statistics-based analogs used 500 
additional training samples from each target population to estimate mixing 
weights. Asterisks above each bar denote statistical significance of the 
difference versus BOLT-LMM, with black asterisks denoting an advantage 
and red asterisk a disadvantage (*P < 0.05; **P < 0.001). P values were 
computed using a two-sided Wald’s test and were not adjusted for multiple 
comparisons. Error bars denote s.e. Numerical results, results for all 49 
traits analyzed, absolute prediction accuracies (R2) and P values of relative 
improvements versus BOLT-LMM are reported in Supplementary Tables 4–6.

NATuRe GeNeTicS | VOL 54 | APRIL 2022 | 450–458 | www.nature.com/naturegenetics454

http://www.nature.com/naturegenetics


ArticlesNATUrE GENETicS

We excluded methods that require individual-level training data 
(BOLT-LMM and PolyPred) from this analysis.

The results are summarized in Extended Data Fig. 1 and reported 
in Supplementary Tables 5 and 8 (see also Table 2). Briefly, PolyPred-P 
was generally the most accurate method and PRS-CS outperformed 
SBayesR (with a significant improvement for non-British Europeans 
and Africans), consistent with a previous study57 (unlike our analy-
sis of UK Biobank training data, where SBayesR outperformed 
PRS-CS; Fig. 4). However, differences between similarly performing 
methods were generally not statistically significant (due to a moder-
ately large s.e.) and thus caution should be exercised in their inter-
pretation; for this reason, we did not perform secondary analyses to 
further assess differences between methods.

We conclude that PolyPred-P can increase cross-population 
polygenic prediction accuracy versus published methods when ana-
lyzing summary statistics from a meta-analysis of many cohorts.

PRS in Biobank Japan and Uganda-APCDR cohorts. We applied 
PolyPred and its summary statistics-based analogs to predict 23 
diseases and complex traits in Biobank Japan41 and seven complex 
traits in Uganda-APCDR, an African-ancestry cohort42,43 (Methods 
and Supplementary Table 3). We performed these experiments 
to avoid training effect sizes and testing predictions in the same 
cohort, which may produce inflated prediction accuracies33,58–60. We 
again used UK Biobank British training data (average n = 325,000) 
to estimate SNP effect sizes and used 500 individuals from the tar-
get population to estimate mixing weights. We evaluated predic-
tion accuracy using individuals from each of the two target cohorts 
that were not included in the training data: 5,000 Biobank Japan 
individuals and 1,300 Uganda-APCDR individuals. We again com-
pared PolyPred and its summary statistics-based analogs with P + T, 
BOLT-LMM, SBayesR and PRS-CS. We meta-analyzed relative R2 
across the same seven well-powered, independent complex traits 
used in the UK Biobank analyses (Supplementary Table 3).

The results are summarized in Fig. 5 and reported in 
Supplementary Tables 5 and 9. Among the published methods, we 
again observed that BOLT-LMM attained the highest prediction 
accuracy in each target population, and that P + T was substan-
tially less accurate than the other methods. Across all seven meth-
ods, PolyPred attained the highest prediction accuracy in Biobank 
Japan and PolyPred-P attained the highest prediction accuracy 
in Uganda-APCDR (although the difference between PolyPred 
and PolyPred-P in Uganda-APCDR was not statistically signifi-
cant). Improvements of PolyPred versus BOLT-LMM in average 
relative-R2 = +13% in Biobank Japan (P = 2 × 10−6) and +22% in 
Uganda-APCDR (P = 0.26), similar to our UK Biobank results 
above. We observed similar improvements for PolyPred-S versus 
SBayesR and PolyPred-P versus PRS-CS (both of which were sta-
tistically significant in Biobank Japan). Prediction accuracy for each 
method was much smaller in Biobank Japan and Uganda-APCDR 
(for example, 0.32 and 0.11 for PolyPred; Fig. 5) than in UK Biobank 
east Asians and UK Biobank Africans (0.62 and 0.34; Fig. 4), prob-
ably due to higher SNP heritabilities in the UK Biobank (see below). 
We also applied PolyPred+ and its summary statistics-based analogs 
to Biobank Japan, incorporating additional Biobank Japan training 
data (average n = 124,000), with the caveat that this analysis involved 
training and testing in the same cohort (Methods). PolyPred+ 
attained increased prediction accuracy, with a further +23% 
improvement versus PolyPred (P = 0.0004), with similar results for 
PolyPred-S+ and PolyPred-P+ (Supplementary Tables 5 and 9).

We performed additional experiments to investigate the above 
result of decreased prediction accuracy in Biobank Japan versus UK 
Biobank east Asians. We matched the BOLT-LMM British training 
sample size to the Biobank Japan training sample size and obtained 
a relative R2 in UK Biobank non-British Europeans (using UK 
Biobank British training samples) +108% larger than in Biobank 

Japan (using Biobank Japan training samples), consistent with the 
+104% increase expected from theory61,62 based on the +67% higher 
SNP heritabilities in the UK Biobank (Supplementary Table 10 and 
Supplementary Note). This suggests that differences in SNP heri-
tability due to ancestry or cohort differences may explain most of 
the differences in prediction accuracies observed between the UK 
Biobank and Biobank Japan. Further experiments and interpretation 
are provided in Supplementary Note. We performed six additional 
secondary analyses to evaluate the sensitivity of the results to various 
factors (Supplementary Note and Supplementary Tables 5 and 9).

We conclude that PolyPred and its summary statistics-based 
analogs substantially increase cross-population polygenic predic-
tion accuracy versus published methods when applied to target 
cohorts different from the training cohort.

PRSs in east Asians using British and Japanese training data. 
We applied PolyPred+ and its summary statistics-based analogs 
to predict 23 diseases and complex traits in UK Biobank east 
Asians using UK Biobank British and Biobank Japan training data 
(Supplementary Table 3). We performed this experiment to explore 
the special case where non-European training data are available in 
large sample size from a population that is genetically similar to 
the target population, in a cohort that is distinct from the target 
cohort (previous studies considered only European training data or 
analyzed non-European training data from the target cohort11,13–17). 
We note that this experiment is still imperfect in that the European 
training data and non-European target data are from the same 
cohort (UK Biobank); however, we believe that cohort effects would 
deflate rather than inflate the relative improvement of PolyPred+ 
versus other methods, because they would confer an advantage on 
the European training data but not the non-European training data. 
We used UK Biobank British training data (average n = 325,000) 
and Biobank Japan training data (average n = 124,000) to estimate 
SNP effect sizes. We again used 500 individuals from the target 
population to estimate mixing weights and evaluated prediction 
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Fig. 5 | cross-population PRS results for Biobank Japan and 
uganda-APcDR traits. We report average prediction accuracy (relative R2; 
see text), meta-analyzed across seven well-powered, independent traits, 
for PRSs trained in UK Biobank British samples (average n = 325,000) 
and applied to Biobank Japan and Uganda-APCDR target populations. 
Target population sample sizes are indicated in parentheses; PolyPred 
and its summary statistics-based analogs used 500 additional training 
samples from each target population to estimate mixing weights. Asterisks 
above each bar denote statistical significance of the difference versus 
BOLT-LMM, with black asterisks denoting an advantage and red asterisks 
a disadvantage (*P < 0.05; **P < 0.001). P values were computed using a 
two-sided Wald’s test and were not adjusted for multiple comparisons. 
Error bars denote the s.e. Numerical results, results for all 23 traits 
analyzed, absolute prediction accuracies (R2) and P values of relative 
improvements versus BOLT-LMM are reported in Supplementary Table 9.
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accuracy using 900 UK Biobank east Asians who were not included 
in the training data. We compared PolyPred, PolyPred+ and their 
summary statistics-based analogs to P + T, BOLT-LMM, SBayesR 
and PRS-CS (Methods). We meta-analyzed relative R2 across the 
same seven well-powered, independent complex traits used in the 
previous analyses (Supplementary Table 3).

The results are summarized in Fig. 6 and reported in 
Supplementary Tables 4–6. PolyPred+ attained the highest pre-
diction accuracy, with a +24% improvement versus BOLT-LMM 
(P = 0.0009) and a +12% improvement versus PolyPred (P = 0.0014). 
This implies that incorporating non-European training data can 
provide a substantial advantage, if it is available in large sample 
size. Results for PolyPred-S+ (versus SBayesR and PolyPred-S) 
and PolyPred-P+ (versus PRS-CS and PolyPred-P) were similar. 
We emphasize that the +12% improvement for PolyPred+ versus 
PolyPred should be viewed as a lower boundary on the improve-
ment that would be obtained in settings without cohort effects 
that may confer an advantage on the European training data. We 
performed additional secondary analyses to evaluate the sensi-
tivity of the results to various factors (Supplementary Note and 
Supplementary Tables 4–6).

We conclude that PolyPred+ and its summary statistics-based 
analogs further increase cross-population prediction accuracy in 
the special case where non-European training data from the target 
population (or a closely related population) are available in large 
sample sizes. We emphasize that efforts to assess the benefit of incor-
porating non-European training data should analyze non-European 
training data from a cohort that is distinct from the target cohort, 
otherwise results may be inflated due to cohort effects.

Discussion
We have introduced PolyPred, which improves cross-population 
polygenic risk prediction by incorporating causal effects in addition 

to tagging effects, addressing cross-population LD differences. 
Across seven well-powered independent traits, PolyPred signifi-
cantly increased prediction accuracy over BOLT-LMM by 32% in 
UK Biobank Africans and by 13% in Biobank Japan (with simi-
lar results versus SBayesR and PRS-CS). In the special case where 
a large training sample is available in the non-European target 
population (or a closely related population), we have introduced 
PolyPred+, which further incorporates the non-European train-
ing data, addressing MAF differences and causal effect-size differ-
ences. PolyPred+ significantly increased prediction accuracy in UK 
Biobank east Asians over BOLT-LMM by 24% (and over PolyPred 
by 12%). PolyPred and PolyPred+ require individual-level training 
data (for their BOLT-LMM component), but we have also intro-
duced summary statistics-based analogs of PolyPred and PolyPred+ 
in cases where individual-level training data are not available; spe-
cific recommendations are provided in Fig. 2 (see also Table 2). 
In conclusion, PolyPred and its summary statistics-based analogs 
substantially improve cross-population polygenic prediction accu-
racy, ameliorating health disparities13. We have publicly released the 
PRS coefficients for all SNPs and traits analyzed under all evaluated 
methods (Data availability).

Although we substantially improved cross-population PRS accu-
racy over the state of the art, prediction accuracy in non-Europeans 
is still substantially lower compared with Europeans, even within the 
UK Biobank. There are two reasons for the remaining accuracy gap. 
First, European sample sizes are still limited, which limits the abil-
ity of PolyFun-pred to estimate causal rather than tagging effects. 
Second, non-European sample sizes are limited, which limits the 
ability of BOLT-LMM applied to non-European samples to estimate 
tagging effects. Even with an infinite European training sample, 
which allows estimating causal effects perfectly (thus addressing LD 
differences), prediction accuracy could still be higher for Europeans 
versus non-Europeans due to cross-population genetic correla-
tions <1 (refs. 13,30,63,64) and different allele frequencies (including 
population-specific SNPs) (Supplementary Note). Hence our the-
ory and results confirm that larger non-European genome-wide 
association studies (GWASs) are the best way to further improve 
PRS accuracy in non-European populations9,10,12,13,21.

Our work had several limitations, providing opportunities for 
future work. First, we did not evaluate a setting where the British 
training data, the non-British training data and the target popula-
tion were sampled from three different cohorts. Second, PolyPred 
requires a large number of imputed SNPs (for example, 8.1 mil-
lion SNPs in the ENGAGE analysis) to perform fine-mapping, 
motivating the need for large cross-population imputation panels. 
Third, it could be possible to improve PRS accuracy for admixed 
individuals by using European effect sizes for European alleles and 
non-European effect sizes for non-European alleles16,17. Fourth, 
PolyPred and its summary statistics-based analogs were slower than 
alternative PRS methods (Supplementary Note). Fifth, PolyPred 
cannot use data from a fixed-effects meta-analysis of GWAS data 
of different populations (Supplementary Note). Sixth, PolyPred 
requires a small training sample from the target cohort to maintain 
calibrated predictions (Supplementary Note). Finally, PolyPred pre-
diction accuracy could in principle be improved if it were possible 
to decompose its constituent predictors into shared and nonshared 
components (Supplementary Note). Despite all these limitations, 
PolyPred and PolyPred+ and their summary statistics-based analogs 
provide a clear improvement for cross-population polygenic risk 
prediction.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Fig. 6 | cross-population PRS results for uK Biobank east Asians when 
incorporating both european and non-european training data. We report 
average prediction accuracy (relative R2; see text), meta-analyzed across 
seven well-powered, independent traits, for PRSs trained in UK Biobank 
British (average n = 325,000) and Biobank Japan samples (average 
n = 124,000; used by PolyPred+ and its summary statistics-based analogs 
only) and applied to UK Biobank east Asians. The target population sample 
size is indicated in parentheses; PolyPred, PolyPred+ and their summary 
statistics-based analogs used 500 additional training samples from the 
target population to estimate mixing weights. Asterisks above each bar 
denote statistical significance of the difference versus BOLT-LMM, with 
black asterisks denoting an advantage and red asterisks a disadvantage 
(*P < 0.05; **P < 0.001). P values were computed using a two-sided Wald’s 
test and were not adjusted for multiple comparisons. Error bars denote the 
s.e. Numerical results, results for all 23 traits analyzed, absolute prediction 
accuracies (R2) and P values of relative improvements versus BOLT-LMM 
are reported in Supplementary Tables 4–6.
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Methods
PolyPred and its summary statistics-based analogs. All methods in this paper 
use a linear PRS, that is, ŷ =

∑

i xi β̂i, where ŷ is the PRS of an individual, xi is the 
number of minor alleles of SNP i carried by that individual and β̂i is the estimated 
per-allele causal effect size of SNP i. The methods differ in the way they estimate β̂i.

PolyPred and PolyPred+ both combine the methods PolyFun-pred 
and BOLT-LMM, PolyPred-S and PolyPred-S+ both combine the methods 
PolyFun-pred and SBayesR, and PolyPred-P and PolyPred-P+ both combine 
the methods PolyFun-pred and PRS-CS. PolyFun-pred estimates β̂i as the 
(approximate) posterior mean causal effect size of SNP i, as estimated by 
PolyFun + SuSiE35 based on European training data, using 187 functional 
annotations to specify prior causal probabilities (see below). BOLT-LMM 
(respectively SBayesR and PRS-CS) estimates tagging effects (Supplementary 
Note) of HapMap 3 SNPs by applying BOLT-LMM36,37 (respectively SBayesR38 and 
PRS-CS39) to European training data. BOLT-LMM (respectively SBayesR) treats the 
effect of each SNP i as a random effect sampled from a mixture of two (respectively 
four) zero-mean normal distributions, the variances and mixture weights of which 
are determined in a data-driven manner. PRS-CS treats the effect of each SNP i as a 
random effect sampled from a continuous shrinkage prior distribution.

PolyPred and its summary statistics-based analogs compute the effect size of 
each SNP i that is either in HapMap 3 or has a European MAF ≥ 0.1% and INFO 
score ≥ 0.6 as a weighted combination of (1) its PolyFun-pred effect size based on 
European training data and (2) its BOLT-LMM (respectively SBayesR and PRS-CS) 
effect size based on European training data:

β̂i
PolyPred(-S)

= wPolyFun-pred
× β̂i

PolyFun-pred

+wBOLT-LMM/SBayesR/PRS-CS
× β̂i

BOLT-LMM/SBayesR/PRS-CS,
(3)

where β̂i
PolyFun-pred is the PolyFun-pred approximate posterior mean causal 

effect size of SNP i based on European training data, β̂i
BOLT-LMM/SBayesR/PRS-CS 

is the approximate posterior mean tagging effect size of SNP i based on 
European training data using the indicated method (setting the effects of 
SNPs not in HapMap 3 to 0), and wPolyFun-pred and wBOLT-LMM/SBayesR/PRS-CS are 
mixing weights. PolyPred estimates the mixing weights via non-negative least 
squares estimation (that is, least squares estimation constrained to produce to 
non-negative estimates) based on training individuals from the target cohort. 
Specifically, PolyPred (respectively PolyPred-S and PolyPred-P) estimates the 
mixing weights by computing the PRS corresponding to the PolyFun-pred effect 
sizes (given by ŷPolyFun-pred =

∑

i xi β̂
PolyFun-pred
i ) and the PRS corresponding 

to the BOLT-LMM (respectively SBayesR and PRS-CS) effect sizes (given by 
), and then fitting the mixing weights by regressing 

the true phenotypes yi of the training individuals in the target cohort on the 
PolyFun-pred and the BOLT-LMM (respectively SBayesR and PRS-CS) PRSs. The 
use of non-negative least squares estimation guarantees that the correlation of the 
predicted phenotype with the true phenotype is at least as large as the smallest 
of the correlations between each constituent predicted phenotype and the true 
phenotype.

PolyPred+ and its summary statistics-based analogs compute the effect size of 
each SNP i that either is in HapMap 3 or has a European MAF ≥ 0.1% and INFO 
score ≥ 0.6 as a weighted combination of (1) its PolyFun-pred effect size based on 
European training data, (2) its BOLT-LMM (respectively SBayesR and PRS-CS) 
effect size based on European training data and (3) its effect size as estimated by 
applying BOLT-LMM (respectively SBayesR and PRS-CS) to training data from the 
target population (or a closely related population):

β̂i
PolyPred+

= wPolyFun-pred
× β̂i

PolyFun-pred

+wBOLT-LMM/SBayesR/PRS-CS
× β̂i

BOLT-LMM/SBayesR/PRS-CS

+wBOLT-LMM/SBayesR/PRS-CS-non-Eur

×β̂i
BOLT-LMM/SBayesR/PRS-CS-non-Eur,

(4)

where β̂i
BOLT-LMM/SBayesR/PRS-CS-non-Eur is the BOLT-LMM (respectively SBayesR 

or PRS-CS) approximate posterior mean tagging effect of SNP i based on 
training data from the non-European population (and set to zero for SNPs that 
are not in HapMap 3) and wBOLT-LMM/SBayesR/PRS-CS-non-Eur is the mixing weight of 
β̂i

BOLT-LMM/SBayesR/PRS-CS-non-Eur. The mixing weights are estimated as in PolyPred.
In practice, we apply PolyPred and its summary statistics-based analogs by 

linearly combining the PolyFun-pred PRS and the BOLT-LMM (or SBayesR or 
PRS-CS) PRSs (rather than linearly combining the SNP effect sizes). The two 
procedures are almost mathematically identical, with the only difference being that 
a linear combination of PRSs can also accommodate an intercept, which explicitly 
bias-corrects the PRS to the target population.

We applied PolyFun-pred in the same way that we applied PolyFun + SuSiE in 
our previous work35. Briefly, we applied PolyFun-pred across 2,763 overlapping 
3-Mb loci (equally spaced starting at chromosome 1, position 0) spanning 
18,212,157 European MAF > 0.1% imputed SNPs with INFO score > 0.6 (excluding 

the human leukocyte antigen (HLA) and two other long-range LD regions)35, 
assuming 10 causal SNPs per locus. We used summary statistics computed by 
BOLT-LMM, based on up to n = 337,491 unrelated British-ancestry UK Biobank 
individuals and using summary LD information estimated directly from the target 
samples. Full details are provided in ref. 35. We note that the use of BOLT-LMM 
summary statistics is mathematically equivalent to regressing the target phenotypes 
on BOLT-LMM off-chromosome PRSs before applying PolyFun + SuSiE37. We also 
note that the use of 3-Mb loci guarantees that, for each SNP, the estimation of its 
causal effect size takes into account virtually all relevant SNPs that may be in LD 
with that SNP (because LD in European populations rarely ranges beyond 1 Mb65), 
allowing disentanglement of its causal effect size from its tagging effect size.

PRS methods that include noncommon SNPs (MAF < 5%) may be sensitive 
to MAF-dependent and LD-dependent architectures47,66,67. Previous PRS methods 
have largely alleviated this concern by discarding noncommon SNPs instead of 
explicitly modeling their lower per-SNP heritability33,38,39,58,59,68–73. In contrast, 
PolyFun-pred accounts for MAF-dependent and LD-dependent architectures by 
specifying SNP-specific prior causal probabilities based on the baseline-LF model47 
(Supplementary Table 11). In detail, PolyFun-pred uses 187 overlapping functional 
annotations from the baseline-LF model (previously described in ref. 35), including: 
10 common MAF bins (MAF ≥ 0.05), 10 LF MAF bins (0.05 > MAF ≥ 0.001); 6 
LD-related annotations for common SNPs; 5 LD-related annotations for LF SNPs; 
40 binary functional annotations for common SNPs; 7 continuous functional 
annotations for common SNPs; 40 binary functional annotations for LF SNPs; 3 
continuous functional annotations for LF SNPs; and 66 annotations constructed 
via windows around other annotations74 (Supplementary Table 11).

Estimating relative R2 and its s.e. We measured prediction accuracy for each trait 
via a measure that we call relative R2, defined via the following computations:

 (1) Compute R2-PRS: the R2 obtained via a linear predictor that includes PRS, 
age, sex, age × sex (if the correlation with age was <0.95), UK Biobank as-
sessment center (defined via dummy binary variables), genotyping array, 
ten principal components (PCs; computed separately for each ancestry; see 
below) and dilution factor (for biochemical traits only).

 (2) Compute R2-noPRS, defined like R2-PRS but omitting the PRS.
 (3) Compute R2-PRS-BOLT-EUR, computed by applying BOLT-LMM to UK 

Biobank non-British Europeans as in step (1).
 (4) Compute R2-noPRS-BOLT-EUR, computed by applying BOLT-LMM but 

omitting the PRS to non-British Europeans.
 (5) Compute relative R2 as (R2-PRS − R2-noPRS)/(R2-PRS-BOLT-EUR − R2 

− noPRS-BOLT-EUR).

We note that fold improvement in relative R2 is the same as fold improvement in 
absolute difference in R2 (that is, in R2-PRS − R2-noPRS), because the denominator 
(R2-PRS-BOLT-EUR − R2-noPRS-BOLT-EUR) is a trait-specific scaling factor.

We computed the s.e. of relative R2, differences in relative R2 (for example, 
versus BOLT-LMM), ancestry-specific regression slopes and the area under 
the receiver operating curve (for disease traits) via genomic block-jackknife, 
partitioning the genome into 200 equally sized consecutive loci and omitting 
each one in turn. In secondary analyses, we computed the s.e. by applying 
jackknife over individuals from the target population. These analyses yielded 
much smaller s.e.s in the UK Biobank, suggesting that genomic block-jackknife 
s.e.s may be conservative, whereas individual-based jackknife estimates maty be 
anti-conservative. We emphasize that individual-based jackknife explicitly assumes 
a fixed training set.

We estimated statistics (for example, relative R2) for meta-analyzed traits via 
an inverse-variance-weighted average, using weights inversely proportional to the 
s.e. of the R2 of BOLT-LMM in the target population (as estimated via genomic 
block-jackknife). We estimated the s.e. of the meta-analyzed statistics as the square 
root of the weighted average of the trait-specific sampling variances (obtained via 
genomic block-jackknife), divided by the square root of the number of traits. We 
computed P values of differences in relative R2 versus BOLT-LMM via Wald’s test.

We computed the statistical significance of the decrease in R2 in non-European 
versus European target samples via Wald’s test for the difference in R2, 
conservatively estimating the sampling variance of this difference as the sum of 
the sampling variances of the European R2 and the non-European R2 (this is a 
conservative estimate as long as the R2 estimates in Europeans and non-Europeans 
are not negatively correlated, which is extremely unlikely).

Cohorts analyzed. UK Biobank. The UK Biobank is a UK-based population 
cohort40. We used v.3 of the imputed genotypes, as described in our previous 
work35. We computed ancestry-specific PCs for UK Biobank Africans, UK Biobank 
east Asians and UK Biobank south Asians via PLINK v.1.9 (ref. 75), restricting 
to SNPs that have ancestry-specific MAF > 5%, missingness < 10% and Hardy–
Weinberg equilibrium P value > 10−10, and were LD pruned using the command 
--indep-pairwise 1000 50 0.05, and restricted to unrelated individuals (kinship 
coefficient <0.05) from the target ancestry with missingness <10%. We used the 
UK Biobank-provided PCs for UK Biobank Europeans.

We defined the ‘autoimmune disease’ trait in the UK Biobank as a union of 
the following UK Biobank codes: 1154 (irritable bowel syndrome), 1222 (type 
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1 diabetes), 1224 (thyroid problem), 1225 (hyperthyroidism/thyrotoxicosis), 
1226 (hypothyroidism/myxedema), 1256 (acute infective polyneuritis/Guillain–
Barré syndrome), 1260 (myasthenia gravis), 1261 (multiple sclerosis), 1313 
(ankylosing spondylitis), 1372 (vasculitis), 1377 (polymyalgia), 1378 (Wegener’s 
granulomatosis), 1381 (systemic lupus erythematosus), 1382 (Sjögren’s syndrome/
sicca syndrome), 1384 (scleroderma/systemic sclerosis), 1437 (myasthenia gravis), 
1453 (psoriasis), 1456 (malabsorption/celiac disease), 1461 (inflammatory bowel 
disease), 1462 (Crohn’s disease), 1463 (ulcerative colitis), 1464 (rheumatoid 
arthritis), 1477 (psoriatic arthropathy), 1522 (Graves’ disease), 1661 (vitiligo) and 
1667 (alopecia/hair loss).

ENGAGE. ENGAGE is a consortium comprising 24 cohorts that study the impact 
of genetic variations on medical phenotypes through GWASs54. The consortium 
has performed over 80,000 GWASs using genetic and phenotype samples from 
>600,000 individuals and made the GWAS summary statistics publicly available54.

We obtained ENGAGE GWAS summary statistics, representing fixed-effect 
meta-analyses from 22 studies of European ancestry, for 2 lipid phenotypes55 
(triglyceride (n = 56,267) and total cholesterol (n = 58,327)) and 2 obesity-related 
phenotypes56 (BMI (n = 80,938) and BMI-adjusted waist:hip ratio (n = 49,877)). In 
each ENGAGE study, up to 37.4 million autosomal variants were imputed using 
the 1000 Genomes project (we used 8.1 million variants which were also imputed 
in the UK Biobank); phenotypes were adjusted for age, age squared, genotype 
PCs and other study-/trait-specific covariates, and were inverse-rank normalized; 
GWASs were performed for each sex separately and combined using fixed-effect 
meta-analysis; a single genomic control correction was performed for each study 
before a cross-study meta-analysis55,56.

Biobank Japan. Biobank Japan (BBJ) is a multi-institutional, hospital-based 
biobank with DNA and serum samples from approximately 200,000 participants 
from 12 medical institutions in Japan41. The participants are mainly of Japanese 
ancestry and had been diagnosed with at least 1 of 47 diseases by physicians at 
the cooperating hospitals. Written informed consent was obtained from all the 
participants, as approved by the ethics committees of RIKEN Center for Integrative 
Medical Sciences and the Institute of Medical Sciences at the University of Tokyo.

We genotyped samples with either (1) the Illumina HumanOmniExpressExome 
BeadChip or (2) a combination of the Illumina HumanOmniExpress and 
HumanExome BeadChips. We applied standard quality control criteria for both 
samples and variants as detailed elsewhere76. We then pre-phased genotypes with 
Eagle v.2 (ref. 77) and imputed dosages with Minimac3 (ref. 78) using 1000 Genomes 
project phase 3 (v.5) data (n = 2,504) and Japanese whole-genome sequencing 
(WGS) data (n = 1,037) as a reference76. We computed PCs using EIGENSOFT’s 
smartpca79.

For phenotypes, we retrieved clinical medical records from the participating 
hospitals through interviews and a standardized questionnaire. We used 23 
diseases and complex traits in BBJ which are also analyzed in UK Biobank 
(Supplementary Table 3). We normalized quantitative phenotypes via inverse-rank 
normal transformation as described elsewhere80. We defined the ‘autoimmune 
disease’ trait in BBJ as a union of Graves’ disease and rheumatoid arthritis.

Uganda-APCDR. Uganda-APCDR is a population-based cohort from the general 
population cohort, Uganda. We retrieved genotype and phenotype data through 
the APCDR initiative via the European Genome–Phenome Archive (EGA), using 
EGAD00010000965 to access genotype data. Phenotype data were accessed via 
sftp from the EGA (reference: DD_PK_050716 gwas_phenotypes_28Oct14.txt). 
The participants were from nine ethno-linguistic groups in sub-Saharan Africa 
and had been recruited from the study area located in south-western Uganda 
in the Kyamulibwa subcounty of the Kalungu district, approximately 120 km 
from Entebbe town. These ethno-linguistic groups have a diverse population 
structure with varying degrees of admixture between Eurasian and east African 
Nilo-Saharan ancestries, which has been extensively characterized elsewhere81. 
The detailed cohort demographics, sample collection and processing have been 
described previously42,43.

Briefly, the samples were genotyped using the Illumina HumanOmni 2.5-M 
BeadChip at the Wellcome Trust Sanger Institute. We used the Ricopili pipeline 
to conduct pre-imputation quality control and perform phasing and imputation82. 
Briefly, we phased the data using Eagle v.2.3.5 (ref. 77) and imputed variants 
using Minimac3 (ref. 78) in chunks ≥3 Mb. The 1000 Genomes project phase 3 
haplotypes65 were used as the reference panel for phasing and imputation.

As described previously, phenotypes were collected using a standard individual 
questionnaire, blood samples (laboratory tests) and biophysical measurements 
(height, weight, waist and hip circumferences, and blood pressure)42. We 
normalized quantitative phenotypes via inverse-rank normal transformation.

UK Biobank simulations. We simulated data based on real genotypes of UK 
Biobank individuals, using 250,963 MAF ≥ 0.1% SNPs with INFO score ≥ 0.6 on 
chromosome 22 (including short indels) (Supplementary Note). We trained all 
methods using 337,491 unrelated British-ancestry individuals40, and we estimated 
the mixing weights of PolyPred and its summary statistics-based analogs using up 
to 1,000 additional individuals from each of the four non-British ancestries. We 

computed summary statistics by applying linear regression via PLINK v.2.0. We 
did not evaluate PolyPred+ in the simulations because of the relatively small sample 
sizes of the UK Biobank non-European populations. We evaluated prediction 
accuracy via R2, using held-out individuals who were not included in the training 
sets and were unrelated to the training set individuals and to each other, using 
42,000 non-British Europeans, 7,700 south Asians, 900 east Asians and 6,200 
Africans. We computed PRSs by applying PLINK v.2.0 with the --score command, 
using imputed dosage data (rather than hard-called SNP values). We computed 
s.e.s via a jackknife over simulations.

We trained BOLT-LMM by applying BOLT-LMM v.2.3.4 to PLINK files 
of HapMap 3 SNPs (hard-coded from imputed dosages), using the same 
covariates specified in Estimating relative R2 and its s.e., and specifying the flag 
--predBetasFile to report PRS coefficients.

We trained SBayesR using summary statistics from the infinitesimal version 
of BOLT-LMM (BOLT-LMM-inf36), which yielded far superior accuracy versus 
using summary statistics from the noninfinitesimal version of BOLT-LMM. We ran 
SBayesR using 10,000 iterations, 4,000 burn-in iterations, using values from 10% 
of the iterations to compute posterior means and the HapMap 3 LD files published 
by the SBayesR authors83. We attempted to run SBayesR using a mixture of four 
distributions (using π = [0.95, 0.02, 0.02, 0.01] and γ = [0, 0.01, 0.1, 1]). In 
case SBayesR failed with these parameters, we iteratively shrank the last entry in 
the vector γ by 50% until it was <10−6, at which point we removed the last mixture 
component and redefined π such that the first entry was equal to 0.95 and all other 
entries had the same value such that all values sum to 1.0.

We trained PRS-CS using summary statistics from BOLT-LMM-inf (as in 
SBayesR) with the parameters a = 1, b = 0.5, thin = 5, n_iter = 10000, n_burnin 
= 500, and without specifying the value of φ (corresponding to PRS-CS-auto). We 
used the UK Biobank LD reference panels made publicly available by the authors of 
PRS-CS (see below).

We trained P + T by applying PLINK with the command –clump-r2 0.5 –
clump-kb 250 and various values of –clump-p1 (following ref. 13), and using 10,000 
randomly selected, unrelated UK Biobank British individuals to compute LD. We 
estimated LD using 10,000 individuals to balance between runtime and accuracy 
(noting that P + T is relatively insensitive to the LD reference panel size compared 
with the other methods evaluated in this manuscript). We used summary statistics 
based on BOLT-LMM, using marginal effect sizes derived from reported χ2 
values (that is, the square root of χ2 divided by the square root of the BOLT-LMM 
effective sample size35, and multiplied by the sign of the effect size estimated by the 
infinitesimal version of BOLT-LMM). We used the best value of –clump-p1 (out of 
the evaluated values 10−2, 10−3, 10−4, 10−6 and 5 × 10−8) based on the target sample 
phenotypes, which leads to anti-conservative prediction accuracy estimates for P + T.

We used slightly different LD reference panels for PolyFun-pred, SBayesR 
and PRS-CS, because (1) they use different algorithms to impose sparsity on LD 
matrices, and different file formats to store them, and (2) we assume that naively 
running SBayesR or PRS-CS using summary LD from the 18 million SNPs used by 
PolyFun-pred would be computationally infeasible, based on information provided 
in the papers describing these methods38,39. When modifying the training sample size, 
we kept the LD reference panel sample size fixed to alleviate computational costs.

Analysis of real data. We performed four sets of analyses: (1) analysis of four UK 
Biobank populations using UK Biobank British training data; (2) analysis of four 
UK Biobank populations using ENGAGE meta-analysis training data; (3) analysis 
of BBJ and Uganda-APCDR cohorts; and (4) analysis of UK Biobank east Asians 
using UK Biobank British and BBJ training data. In analysis sets (1), (3) and (4), 
we evaluated PRSs generated by training all methods using unrelated UK Biobank 
British-ancestry individuals. In analysis set (2), we evaluated PRSs generated by 
training all methods using summary statistics from 8.1 million meta-analyzed 
summary statistics from the ENGAGE consortium54–56. In a subset of analysis set 
(3) and in analysis set (4) we additionally evaluated PRSs generated by training 
BOLT-LMM–BBJ (BOLT-LMM trained on BBJ individuals). In all analysis sets, 
the individuals in the target populations were unrelated to each other and to the 
individuals in the training set (when available).

In analysis sets (1), (3) and (4), we selected the seven traits to meta-analyze 
by first restricting the set of 49 traits analyzed in ref. 35 to traits that are available 
in BBJ and Uganda-APCDR and are well powered across multiple ancestries, 
having h2 > 0.05 in UK Biobank non-British Europeans, UK Biobank south Asians 
and UK Biobank Africans (see below for details on ancestry-specific heritability 
estimation). We then iteratively greedily selected ranked traits according to their 
heritability in UK Biobank non-British Europeans (estimated as in ref. 35), such that 
no selected trait had |rg| < 0.3 with a previously selected trait.

We computed ancestry-specific SNP heritabilities in each UK Biobank ancestry 
by applying GCTA84 to unrelated sets of individuals using hard-called HapMap 
3 SNPs (using a random set of 10,000 individuals for non-British Europeans to 
facilitate the computations). We did not use more advanced methods85 because 
of the relatively small sample sizes. We meta-analyzed ancestry-specific SNP 
heritabilities by averaging the estimated heritabilities and we estimated the 
meta-analyzed s.e. via the square root of the average sampling variance, divided by 
the square root of the number of traits.

In analysis sets (1), (3) and (4), we trained all PRS methods on UK 
Biobank-unrelated British-ancestry individuals (average n = 325) as described in 
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UK Biobank simulations, but using summary statistics generated by BOLT-LMM 
when applied to UK Biobank British-ancestry individuals, as described in our 
previous work35. We trained P + T separately for each non-UK Biobank cohort by 
restricting the set of SNPs considered to be the set of SNPs available in both the 
UK Biobank and the target cohort. We computed the contribution of PolyFun-pred 
(respectively BOLT-LMM) toward PolyPred via the ratio of the mixing weight 
of PolyFun-pred (respectively BOLT-LMM) to the sum of the mixing weights of 
PolyPred and BOLT-LMM.

In analysis sets (1), (2) and (4), we computed a PRS for each UK Biobank 
individual using imputed dosage data as described in the UK Biobank 
simulations. In analysis set (3), we computed a PRS for each individual in BBJ and 
Uganda-APCDR using imputed dosage data and PLINK v.2.0 (refs. 86,87).

In secondary analyses of analysis set (1) we also evaluated LDpred33. We 
trained LDpred using HapMap 3 SNPs and two different LD reference panels: 
1000 Genomes project65 and UK10K88. We used summary statistics from the 
infinitesimal version of BOLT-LMM (as in SBayesR) and with default parameters, 
using the parameter --ldr 400. We used the value of ‘--F’ (corresponding to the 
assumed proportion of causal SNPs, using all the default-evaluated values) that 
yielded the best prediction accuracy in the target sample, yielding anti-conservative 
accuracy estimates as in P + T.

In analysis sets (3) and (4), we trained BOLT-LMM-BBJ, SBayesR-BBJ and 
PRS-CS-BBJ (BOLT-LMM, SBayesR and PRS-CS, respectively, trained using BBJ 
training data) (average n = 124,000). We selected individuals for training these 
methods as described in our previous work13, but excluding a random subset 
of 5,000 individuals who were used for evaluating prediction accuracy. For 
SBayesR-BBJ, we used a subset of individuals (n = 50,000) from BBJ to compute 
in-sample LD, following the recommendations of the authors of SBayesR38. For 
PRS-CS-BBJ, we used the east Asian LD reference panels made publicly available 
by the authors of PRS-CS (Data availability).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Access to the UK Biobank resource is available via application (http://www.
ukbiobank.ac.uk). PRS coefficients generated in the present study are available for 
public download at http://data.broadinstitute.org/alkesgroup/polypred_results. 
Summary LD information of n = 337,000 British-ancestry UK Biobank individuals 
for 2,763 overlapping 3-Mb loci is available at https://data.broadinstitute.org/
alkesgroup/UKBB_LD. Summary LD information of n = 50,000 UK Biobank 
individuals for SBayesR is available at https://zenodo.org/record/3350914. 
Summary LD information used by PRS-CS is available at https://github.com/
getian107/PRScs. Baseline-LF v.2.2.UKB annotations and LD scores for UK 
Biobank SNPs are available at https://data.broadinstitute.org/alkesgroup/
LDSCORE/baselineLF_v2.2.UKB.tar.gz. Source data are provided with this paper.

code availability
PolyPred and PolyPred+ are provided as part of the open-source software package 
PolyFun, which is freely available at https://doi.org/10.5281/zenodo.6139679 (ref. 
89) and https://github.com/omerwe/polyfun. BOLT-LMM is available at https://
data.broadinstitute.org/alkesgroup/BOLT-LMM. SBayesR is available at https://
cnsgenomics.com/software/gctb. PRS-CS is available at https://github.com/
getian107/PRScs.
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Extended Data Fig. 1 | cross-population PRS results for real uK Biobank traits, using summary statistics from a meta-analysis of many cohorts. We 
report average prediction accuracy (relative-R2, but computed with respect to PRS-CS instead of BOLT-LMM; see main text), meta-analyzed across 
4 well-powered, approximately independent traits, for PRS trained in European Network for Genetic and Genomic Epidemiology (ENGAGE) samples 
(average N = 61,365) and applied to four UK Biobank populations. Target population sample sizes are indicated in parentheses; PolyPred and its summary 
statistic-based analogues used 500 additional training samples from each target population to estimate mixing weights. Asterisks above each bar denote 
statistical significance of the difference vs. PRS-CS, with red asterisks denoting a disadvantage (*P < 0.05; **P < 0.001). P-values were computed using a 
two-sided Wald test and were not adjusted for multiple comparisons. Errors bars denote standard errors. Numerical results, results for all 4 traits analyzed, 
absolute prediction accuracies (R2), and P-values of relative improvements vs. PRS-CS are reported in Supplementary Table 5 and Supplementary Table 8.
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