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Schizophrenia is an often-disabling psychiatric disorder that 
occurs worldwide with a lifetime risk of about 1% (ref. 1). It is 
well established that genetic factors contribute to the suscep-

tibility of schizophrenia. Recently, 145 genetic loci were associated 
with schizophrenia in samples of primarily European ancestry2,3 
(EUR), but this still represents the tip of the iceberg with respect 
to common variant liability to the disorder: the highly polygenic 
nature of common variation underlying this disorder predicts that 
there are hundreds more loci to be discovered4.

Most genetic studies of schizophrenia have been performed in 
EUR samples, with relatively few studies in other populations5–8. 
This is a substantial deficiency for multiple reasons, particularly as 
it greatly limits the discovery of biological clues about schizophre-
nia. For some causal variants, ancestry-related heterogeneity yields 
varying allele frequency and linkage disequilibrium (LD) patterns 
such that associations that can be detected in one population may 
not be readily detected in others. Examples include a nonsense 
variant in TBC1D4, which confers muscle insulin resistance and 

increases risk for type 2 diabetes, which is common in Greenland 
but rare or absent in other populations9, several Asian-specific cod-
ing variants that influence blood lipids10, a variant highly protec-
tive against alcoholism that is common in Asian populations but 
uncommon elsewhere11, and two loci associated with major depres-
sion12 that are more common in Chinese populations than in EUR 
samples12,13 (rs12415800: 45 versus 2%; rs35936514: 28 versus 6%).

Even if alleles have similar frequencies across populations, the 
effects of alleles on risk might be specific to certain populations if 
there are prominent but local contributions of clinical heterogeneity 
or gene–environment or gene–gene interactions. In addition, there 
have been debates about differences in prevalence, symptomatol-
ogy, etiology, outcome and course of illness across geographical 
regions14–19. Understanding the genetic architecture of schizophre-
nia across populations provides insights into whether any differ-
ences represent etiologic heterogeneity on the illness.

Finally, polygenic risk score (PRS) prediction is emerging as a 
useful tool for studying the effects of genetic liability, identifying 
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more homogeneous phenotypes, and stratifying patients. However, 
previous studies have shown that prediction accuracy decays with 
increasing genetic divergence between the risk allele discovery 
and target datasets20,21. The risk predicted, measured as R2 (coef-
ficient of determination), was only 45% as accurate in East Asians 
(EAS) compared with in EUR individuals when computed from 
genome-wide association studies (GWASs) of Europeans22. These 
differences can be explained by ancestry-related differences in 
allele frequencies, LD and other factors22. Importantly, the appli-
cability of training data from EUR studies to those of non-EUR 
ancestry has not been fully assessed, leaving uncertainty as to the 
biological relevance of discoveries made in EUR samples for non-
Europeans21.

Results
Schizophrenia genetic associations in East Asian (EAS) popu-
lations. This study combined multiple samples from individu-
als with schizophrenia across EAS to systematically examine the 
genetic architecture of schizophrenia in individuals of EAS ances-
try. We compiled 22,778 schizophrenia cases and 35,362 controls 
from 20 sample collections from East Asia (Supplementary Table 
1). Individual-level genotypes were available from 16 sample 
collections (Supplementary Table 1), on which we performed 
quality control, imputation and association tests (Methods and 
Supplementary Table 2). Two sample collections (TAI-1 and TAI-
2) were trio-based, and pseudo-controls were used. Four sample 
collections made available summary statistics for 22,000–31,000 
selected variants (Methods) that had been analyzed in published 
studies7,8. Compared with the latest study using only Chinese indi-
viduals8, our study had about twice the sample size, and was much 
more diverse.

We used a two-stage study design (Supplementary Table 1a). 
Stage 1 included 13 sample collections for which we had individual 
genotype data (13,305 cases and 16,244 controls after quality con-
trol). Stage 2 incorporated the remaining seven sample collections: 
full genotype data from three sample collections that arrived after 
the stage 1 data freeze, and summary statistics (for selected vari-
ants) from four sample collections (Supplementary Table 1). Meta-
analyses across stage 1 samples and across all EAS samples were 
conducted using a fixed-effect model with inverse-variance weight-
ing. QQ plots (Extended Data Fig. 1) showed no inflation of test 
statistics (indicating that ancestry effects had been well controlled), 
with the genomic inflation factor (λgc) = 1.14, the genomic inflation 
factor scaled for an equivalent study of 1,000 cases and 1,000 con-
trols (λ1,000) = 1.01 and an LD score regression23 (LDSC) intercept of 
1.0145 ± 0.011 using stage 1 samples.

Combining stages 1 and 2, we found 21 genome-wide-signifi-
cant associations at 19 loci (Table 1, Fig. 1, Supplementary Table 
3 and Supplementary Datasets 1 and 2)—an additional 14 associa-
tions compared with the most recent schizophrenia genetic study of 
Chinese ancestry8. Most associations were characterized by marked 
differences in allele frequencies between the EAS and EUR sam-
ples: for 15 of 21 loci, the index variants had higher minor allele 
frequencies (MAFs) in EAS than EUR. The higher allele frequency 
potentially confers better power to detect associations in EAS. For 
example, we identified a locus (Supplementary Dataset 1) with 
the top association (rs374528934) having strong evidence in EAS 
(P = 5 × 10−11) but not in EUR using the stage 1 samples. rs374528934 
has a MAF of 45% in EAS but only 0.7% in EUR. No other variant 
in this locus is significantly associated with schizophrenia in EUR. 
This locus contains CACNA2D2 (encoding the calcium channel 
α2δ-2 subunit associated with childhood epilepsy24,25, and to which 
the anticonvulsant medication gabapentin binds), suggesting a path 
for further therapeutic investigation25. This finding also adds new 
evidence to the calcium signaling pathway suggested to be impli-
cated in psychiatric disorders26,27.

Genetic effects are consistent across populations. For causal vari-
ants, heterogeneity of genetic effects across populations could arise 
from clinical heterogeneity, differences in pathophysiology, envi-
ronmental differences that change the genetic effects (gene–envi-
ronment interaction) or interaction with other genetic factors that 
may differ in frequency across populations (gene–gene interaction). 
Heterogeneity in estimating genetic effect sizes may also be a conse-
quence of differential correlation across genetic markers in a region, 
when investigating variants that are tagging the causal variant but 
do not exert any influence on the trait in question. Such heteroge-
neity does not reflect biological differences, but is rather statistical 
in nature. While it is assumed that biological pathways underlying 
complex human disorders are generally consistent across popula-
tions, genetic heterogeneity has been observed in other genetically 
complex disorders28. The large EAS sample allowed us to systemati-
cally explore the heterogeneity of genetic effects influencing liability 
to schizophrenia across two major world populations.

Using LDSC23 and common variants (MAF > 5%) outside of the 
major histocompatibility complex (MHC) region, we found that 
the single-nucleotide polymorphism (SNP) heritability of schizo-
phrenia is very similar in EAS (0.23 ± 0.03) and EUR (0.24 ± 0.02) 
(Methods and Extended Data Fig. 2a). Using the same set of variants, 
we found that the genetic correlation (rg) for schizophrenia between 
EAS and EUR was indistinguishable from 1 (rg = 0.98 ± 0.03) (using 
POPCORN29—a method designed for cross-ancestry comparisons). 
This finding indicates that the common variant genetic architecture 
of schizophrenia outside of the MHC region is highly consistent 
across EAS and EUR samples.

Genetic correlations between schizophrenia and 11 other psy-
chiatric disorders and behavior traits also showed no significant 
differences when estimated within EUR and across EAS–EUR 
(Extended Data Fig. 2b). In agreement with recent reports30–33, we 
observed significant positive genetic correlations for schizophrenia 
with bipolar disorder, major depressive disorder, anorexia nervosa, 
neuroticism, autism spectrum disorder and educational attainment. 
We observed significant negative correlations with general intelli-
gence, fluid intelligence score, prospective memory and subjective 
well-being.

We used partitioned LDSC23 to look for heritability enrichment 
in diverse functional genomic annotations defined and used in pre-
vious publications34,35 (Methods and Extended Data Fig. 2c,d). Using 
EAS stage 1 samples, we observed significant enrichment (after 
Bonferroni correction) in regions conserved across 29 mammals 
(as described in Lindblad-Toh et  al.36; ‘Conserved LindbladToh’). 
No other annotations were significantly enriched, and there were 
no significant differences between EUR-only and EAS-only enrich-
ments (P = 0.16, two-sided paired t-test).

We identified gene sets that are enriched for schizophrenia 
genetic associations using MAGMA37 and gene set definitions from 
a recent schizophrenia exome sequencing study38 (Methods). Despite 
large differences in sample size and genetic background, the gene 
sets implicated in EAS and EUR samples were highly consistent: we 
observed no significant differences between gene set ranks using the 
EAS samples and gene set ranks using the EUR samples (P = 0.72, 
two-sided Wilcoxon test). In addition, nine of the top ten gene sets 
identified using the EAS samples were also among the top ten gene 
sets identified using the EUR samples (Extended Data Fig. 3).

A study of EUR individuals suggested that common schizophre-
nia alleles are under strong background selection3. We performed 
two analyses and found that the natural selection signatures, 
including positive and background selections, are consistent in 
schizophrenia-associated loci across EAS and EUR populations. 
First, we compared the signatures in the top 100 associated loci in 
EAS with those in EUR. Among the selection signatures we calcu-
lated (Methods), none showed a significant difference across pop-
ulations (Extended Data Fig. 4a; P > 0.05 for all panels, two-sided 
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t-test). Next, we asked whether the population differentiation drives 
schizophrenia variants to have different effects in different popula-
tions. Using 295 autosomal variants that are genome-wide signifi-
cant in EAS, EUR or combined EAS and EUR samples, we did not 
observe a correlation (R2 = 0.003; Extended Data Fig. 4b) between 
the population differentiation (measured by fixation index (FST)) 
and the heterogeneity of the effect size (measured by –log10[P value] 
from the heterogeneity test across EAS and EUR).

As a further test, we examined whether the effect size estimates 
from EUR differed from those from EAS. We performed a hetero-
geneity test (Cochran’s Q) for the most significant variants in the 
108 published schizophrenia-associated loci2. Among them, seven 
variants showed significant heterogeneity after Bonferroni correc-
tion (Supplementary Table 4). Postulating that this might in part be 
driven by the inflation of EUR estimates as a result of the winner’s 
curse, we applied a correction for the winner’s curse39, after which 
none of the variants showed evidence for significant heterogeneity, 
and the P values from the heterogeneity test followed a uniform dis-
tribution (P = 0.10; two-tailed Kolmogorov–Smirnov test).

Lastly, we evaluated the heterogeneity of schizophrenia genetic 
effects within EAS samples. None of the EAS associations showed 
significant heterogeneity across EAS samples (Supplementary 
Table 3). Using their principal components, we further grouped 
the samples into Northeast Asian, Southeast Asian and Indonesian 
subpopulations (Methods). We then performed a heterogeneity test 
(Cochran’s Q) and found no significant heterogeneity among the 
three subpopulations (Extended Data Fig. 5).

Schizophrenia genetic associations from the meta-analysis of 
EAS and EUR. As the genetic effects observed in EAS are largely 

consistent with those observed in EUR, we performed a meta-
analysis including the EUR and EAS samples (stages 1 and 2), 
using a fixed-effect model with inverse-variance weighting40. The 
EUR + EAS samples in this analysis (n = 56,418 cases and n = 78,818 
controls) included all samples of EUR ancestry (n = 33,640 cases and 
n = 43,456 controls) from a previous publication2, with the exclu-
sion of three samples of EAS ancestry and the deCODE samples 
(n = 1,513 cases and n = 66,236 controls), for which only summary 
statistics for selected variants were available. The three EAS samples 
(IMH-1, HNK-1 and JPN-1) excluded from the EUR samples were 
included in our EAS stage 1.

We identified 208 independent variants (both in EAS and EUR) 
associated with schizophrenia across 176 genetic loci (Fig. 2 and 
Supplementary Tables 5 and 6), among which 53 loci were novel 
(not reported in refs. 2,3,7,8). Of the 108 schizophrenia-associated loci 
reported in the previous EUR study2, 89 remained significant in this 
study (Supplementary Table 4). Using simulations with a correc-
tion for winner’s curse39, we found that this was consistent with an 
expected overestimation of the effect sizes due to the winner’s curse 
in the previous study, rather than implying that the 19 loci no longer 
significant in this study were false positives (Supplementary Note). 
In addition, the deCODE samples (n = 1,513 cases and n = 66,236 
controls) were not included in the present study, causing the power 
for loci that had low MAF in EAS to drop.

Population diversity improves fine-mapping. Causal variants in 
complex genetic disorders are defined as those that mechanistically 
contribute to the disorders, but this does not imply that the variant 
in isolation is likely to result in the disorder41,42. Due to LD, disease-
associated loci from GWASs usually implicate genomic regions  

Table 1 | Genome-wide-significant loci in the EAS populations

Stage 1 Stage 2 Combined

SNP Chromosome BP AL P OR P OR P OR

rs4660761 1 44440146 A/G 3.6 × 10−6 0.91 3.53 × 10−4 0.92 5.08 × 10−9 0.91

rs848293 2 58382490 A/G 3.7 × 10−10 0.90 3.10 × 10−9 0.87 9.87 × 10−18 0.89

rs17592552 2 201176071 T/c 8.4 × 10−10 0.86 2.68 × 10−5 0.89 1.50 × 10−13 0.88

rs2073499 3 50374293 A/G 1.1 × 10−9 0.89 2.14 × 10−5 0.91 1.33 × 10−13 0.90

rs76442143 3 51043599 T/c 6.9 × 10−9 1.14 1.03 × 10−2 1.08 6.40 × 10−10 1.12

rs10935182 3 136137422 A/G 1.3 × 10−6 0.90 1.33 × 10−4 0.90 7.08 × 10−10 0.90

rs4856763 3 161831675 A/G 3.9 × 10−6 0.92 8.54 × 10−6 0.91 1.73 × 10−10 0.92

rs13096176 3 180752138 T/c 3.1 × 10−7 0.88 2.21 × 10−3 0.90 3.35 × 10−9 0.89

rs6832165 4 24270210 c/G 3.7 × 10−8 1.12 3.70 × 10−1 1.08 2.79 × 10−8 1.12

rs13142920 4 176728614 A/c 9.5 × 10−5 0.93 5.85 × 10−6 0.89 4.85 × 10−9 0.92

rs4479913 6 165075210 A/G 3.6 × 10−7 1.13 9.98 × 10−5 1.12 1.53 × 10−10 1.12

rs320696 7 137047137 A/c 5.5 × 10−8 0.90 1.07 × 10−2 0.93 2.81 × 10−9 0.91

rs11986274 8 38259481 T/c 5.1 × 10−4 1.07 2.73 × 10−6 1.11 1.44 × 10−8 1.08

rs2612614 8 65310836 A/G 2.2 × 10−8 1.14 4.51 × 10−2 1.06 1.62 × 10−8 1.11

rs4147157 10 104536360 A/G 6.6 × 10−10 0.90 3.87 × 10−7 0.89 1.32 × 10−15 0.89

rs10861879 12 108609634 A/G 4.8 × 10−7 1.09 5.00 × 10−3 1.07 1.18 × 10−8 1.08

rs1984658 12 123483426 A/G 5.1 × 10−11 0.89 2.14 × 10−4 0.92 8.62 × 10−14 0.90

rs9567393 13 32763757 A/G 3.5 × 10−8 1.11 4.37 × 10−3 1.07 1.13 × 10−9 1.09

rs9890128 17 1273646 T/c 3.5 × 10−8 0.90 2.44 × 10−2 0.91 2.61 × 10−9 0.90

rs11665111 18 77622996 T/c 5.2 × 10−6 1.08 6.89 × 10−4 1.09 1.46 × 10−8 1.09

rs55642704 18 77688124 T/c 1.1 × 10−6 1.09 7.11 × 10−6 1.10 3.76 × 10−11 1.09

For eAS stage 1, n = 13,305 cases and n = 16,244 controls. For eAS stages 1 and 2, n = 22,778 cases and n = 35,362 controls. Fixed-effect inverse-variance meta-analysis was utilized to generate the P values. 
AL, reference and non-reference alleles; bP, genomic position in HG19; Or, odds ratio.
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containing many associated variants. A number of approaches allow 
for the associated variants to be refined to a smaller set of the most 
plausible (or credible) candidate causal variants43–46. Loci impli-
cated in psychiatric disorders usually have small effect sizes, and as 
a result have generally poor performance using such approaches2,3.

Diversity in genetic background across populations can be used to 
improve fine-mapping resolution47. Here, we demonstrate that reso-
lution can be improved by exploiting differences in the patterns of 
LD between causal (directly associated) and non-causal (indirectly 
associated through LD) variants. Based on the premise that genetic 
effects are highly consistent across populations, the causal variants 
will have consistent effects across populations, whereas non-causal 
variants can have inconsistent effects due to population-specific LD 
patterns. We therefore expect causal variants to have greater statisti-
cal significance and less heterogeneity in the trans-ancestry meta-
analysis compared with other alleles that are indirectly associated 
via LD (Extended Data Fig. 6). Using an algorithm based on this 
expectation (Methods), we fine-mapped 59 schizophrenia associa-
tions that reached genome-wide significance in the EUR and EAS 
stage 1 combined meta-analysis, had a MAF > 0.01 in both EAS and 
EUR, and for which we had >95% coverage of common variants 
(MAF > 1%) with imputation INFO > 0.6 (Supplementary Table 7). 
The MHC region was excluded from the fine-mapping analysis due 
to its long-range LD. EAS stage 2 samples were excluded because 
not all had full genome coverage, which confounds the fine-map-
ping outcome (Methods).

The results from this EAS and EUR trans-ancestry approach 
improved on those using only EUR, with 44 out of 59 loci mapped to a 
smaller number of candidate causal variants (Supplementary Table 7).  
For example, a locus on chromosome 1 (238.8–239.4 megabases 
(Mb)), which initially contained seven potentially causal variants 
based on a published fine-mapping method43 and EUR samples only, 
was resolved to a single variant (rs11587347) with 97.6% probability  

(Fig. 3a). This variant showed strong association in both popula-
tions, while the other six variants were equally associated in EUR 
but not in EAS (Fig. 3b,c). Over all of the associations, the median 
size of the 95% credible set, defined as the minimum list of variants 
that were >95% likely to contain the causal variant, dropped from 
49 to 30, and the number of associations mapped to ≤5 variants 
increased from two to seven (Fig. 3d). The number of associations 
mapped to a single variant with >50% probability increased from 
five to eight, and median size of the genomic regions the associa-
tions mapped decreased from 154 to 94 kilobases (kb).

Transferability of genetics across populations. For genome-wide-
significant loci that individually explain >0.05% of the variance in 
schizophrenia liability in either ancestry, we compared the vari-
ance explained across EAS and EUR. Variance was approximated as 
2f 1� fð Þ log OR½ 2= π2=3ð Þ
I

 (ref. 48) (Extended Data Fig. 7), where f 
represents the prevalence of the risk allele. Although these variants 
most often have comparable odds ratios across populations, their 
allele frequencies can differ. The variance explained when combin-
ing the effect size (odds ratio) and prevalence of the risk allele (f) 
can be regarded as an approximate measure of the importance of 
a causal variant in a population. In our analysis, most of the trans-
ancestry differences in variance are explained by allele frequency 
differences. One of the implications of this observation, as sug-
gested in recent studies21,49,50, is that even if the risk alleles and effect 
sizes are primarily shared across populations, the disease predictive 
power of individual alleles, and of composite measures of those risk 
alleles such as PRS, may not be equivalent across populations.

Here, we evaluate this empirically. We assessed how much varia-
tion in schizophrenia risk can be explained in EAS using both EAS 
stage 1 and EUR training data. Using a standard clumping approach, 
we first computed PRS using a leave-one-out meta-analysis approach 
with EAS summary statistics (Methods), which explained ~3% of 
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Fig. 1 | Genetic associations in EAS populations. manhattan plot for schizophrenia genetic associations using eAS samples (stages 1 and 2; n = 22,778 
cases; n = 35,362 controls). red and blue dots refer to variants within odd and even chromosomes, respectively. Green dots refer to variants within 
genome-wide-significant loci. Diamonds represent index variants within genome-wide-significant loci. The genome-wide-significance threshold 
(P < 5 × 10–8) is represented as the horizontal red line.
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schizophrenia risk using genome-wide variants on the liability scale 
(R2 = 0.029 at P = 0.5). In contrast, when EUR summary statistics were 
used to calculate PRS in the EAS samples, a maximum of only ~2% 
of schizophrenia risk was explained (R2 = 0.022 at P = 0.1), despite 
a greater than threefold larger EUR effective sample size (Fig. 4  
and Extended Data Fig. 8). The variance explained across various 
P value thresholds provides a proxy for the signal-to-noise ratio, 
which differs by training population—relative to the EUR training 
data, variants from the EAS training data with more permissive P val-
ues improve the EAS prediction accuracy. These results indicate that 
larger EAS studies will be needed to explain case/control variance 
similar to that currently explained in EUR individuals. Furthermore, 
although individual loci typically have the same direction and a simi-
lar magnitude across populations, aggregating variants that differ-
entially tag causal loci across populations for genetic risk prediction 
results in considerable variability in prediction accuracy.

Discussion
To date, most large-scale psychiatric genetics studies have been 
based on samples of primarily EUR ancestry6. To increase global 
coverage, we compiled the largest non-EUR psychiatric genetics 
cohort to date and leveraged its size and diversity to provide new 
insights into the genetic architecture of schizophrenia. This study 
includes all available major genotyped schizophrenia samples of 
EAS ancestry, and presents analyses that have not previously been 
performed with sufficient power in psychiatric genetics. Although 
the first schizophrenia genetic associations from two much smaller 
studies of Chinese ancestry51,52 were not genome-wide significant in 
the present EAS analysis, several loci from their subsequent better-
powered studies7,8 reached genome-wide significance. Consistent 
with a study using EUR samples3, we note that this is consistent with 
the expected inflation of effect size from small studies, rather than 
suggesting that loci in previous studies are false positives.

When a single population is used to identify the disease-associ-
ated loci, the discovery is skewed towards disease-associated vari-
ants that have greater allele frequency in that population (Extended 
Data Fig. 9). When multiple populations are used, disease-asso-
ciated variants are equally represented across the allele frequency 
spectrum in these populations (Extended Data Fig. 9). This shows 
that including global samples improves the power to find disease 
associations for which the power varies across populations. In this 
study, for example, more EUR than EAS samples would be required 
to detect around half of the new loci, as the MAF is higher in EAS 
than in EUR in these loci.

For traits such as body mass index and autoimmune diseases, 
we observed heterogeneity across populations in genetic effects28,53, 
which may point to interactions between genetic associations and 
environmental factors and/or other genetic loci. In contrast, for 
schizophrenia, we did not find significant heterogeneity across 
EAS and EUR ancestries. Analyses of genetic heritability, genetic 
correlation, gene set enrichment and natural selection signatures 
converge on the conclusion that the schizophrenia biology is sub-
stantially shared across EAS and EUR ancestries (with MHC as a 
potential exception, as is discussed below). The remarkable genetic 
correlation (rg = 0.98) shows that schizophrenia risk alleles operate 
consistently across different ethnic and cultural backgrounds—at 
least across EAS and EUR ancestries. Given that the main putative 
environmental risk factors (migration, urbanicity and substance 
misuse) differ across populations, this finding also suggests that any 
specific genetic liability to schizophrenia acting via these routes is 
minimal.

We note that a direct comparison of the effect sizes estimated in 
EAS with those estimated in EUR has reduced accuracy as we do 
not know the exact schizophrenia causal variants. This is further 
complicated by inflations in effect size estimates due to the win-
ner’s curse, which are of different magnitudes due to the sample size. 
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Increasing the sample size, especially in those of non-EUR ances-
tries, will reduce the bias and enable a better isolation of causal vari-
ants, leading to a more precise comparison of the genetic effect size 
across populations.

The MHC hosts the strongest schizophrenia association in 
EUR54. In this study, we did not find a significant schizophrenia 

association in MHC in EAS. An earlier EUR study55 mapped the 
MHC associations to a set of variants (in LD) at both distal ends 
of the extended MHC (lead variant: rs13194504) and the comple-
ment component 4 (C4). None of these associations was signifi-
cant in EAS in this study, which is consistent with previous studies 
of Chinese ancestry7,8,51,52. However, this does not necessarily  
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suggest population heterogeneity in their pathophysiological 
effect, as we attribute the disappearance of MHC signals partially 
to low frequencies. rs13194504 has a MAF < 1% in EAS, com-
pared with 9% in EUR, and the C4-BS allele is extremely uncom-
mon in samples from China and Korea56,57. Another reason may 
be the EUR-specific LD. In EUR, multiple protective alleles that 
contribute to the MHC associations are all on the same haplotype 
across about 6 Mb, due to an extremely long and EUR-specific hap-
lotype that generates LD patterns at a 5-Mb scale. This may also 
be the reason that association signals span so many megabases of 
genome, and the aggregate association signal (at variants that are in  
partial LD to multiple signals) is stronger than the signals at the 
individual associations.

Two recent studies using much smaller samples with individu-
als of Chinese ancestry7,8 reported variants in MHC significantly 
associated with schizophrenia (rs115070292 and rs111782145, 
respectively). The two studies did not replicate each other’s find-
ings, as the reported risk alleles were in very weak LD (r2 = 0.07), 
nor did they replicate the EUR study55, because the risk alleles were 
not in LD with the EUR MHC associations. rs115070292, from 
Yu et al.7, is more frequent in EAS (12%) than in EUR (2%), with 
P = 10−9 using 4,384 cases and 5,770 controls of Chinese ancestry. 
This variant was not significantly associated in our study (P = 0.44), 
even though some samples from the earlier study were included in 
the current study (BJM-1; 1,312 cases and 1,987 controls). The odds 
ratio estimated from these shared samples marginally differs from 
that estimated using all EAS samples (P = 0.018), and this associa-
tion showed marginally significant heterogeneity across all EAS 
samples (P = 0.039). Similarly, we did not replicate the association at 
rs111782145 from Li et al.8 (P = 0.47) despite sample overlap (2,555 
cases and 3,952 controls).

The lack of replication across all of these studies reflects the com-
plexity of the MHC region and the limited power for the MHC signals 
in EAS. As shown in previous studies of complex disorders, it is still 
possible that when sample size increases for the EAS, genome-wide 
association within the MHC region could emerge. A study designed 
for the MHC region, such as in ref. 55, will be necessary to delineate 
the contribution of MHC to schizophrenia in EAS individuals.

Genetic associations usually implicate a large genomic region; 
thus, it can be challenging to map their molecular functions. We 
designed a novel algorithm to leverage the population diversity 
to fine-map schizophrenia associations to precise sets of variants. 
Using this algorithm, we reduced the number of candidate variants 
associated with schizophrenia and facilitated the functional inter-
pretation of these associations. Our algorithm only maps the pri-
mary association signals in a locus because the power to fine-map 
signals beyond that, especially in the EAS samples, is still limited at 
the current sample size for schizophrenia. We also made an assump-
tion that there is only one causal variant driving the primary asso-
ciation signal. In the scenario that there is a haplotypic effect driven 
by multiple variants in strong LD, our approach will split the poste-
rior probability among these variants. We expect the causal variants 
to have non-trivial probability so that they will still be reported in 
the credible set for future studies. Imputation quality plays a key role 
in fine-mapping, as the power to map the causal variant decreases if 
it is poorly imputed. We restricted our study to genetic associations 
that have a MAF > 1% in both EAS and EUR populations to ensure 
the imputation quality. For these associations, we found no major 
change in the size of the credible sets when the EUR samples were 
imputed using the more powerful Haplotype Reference Consortium 
panel58. However, the Haplotype Reference Consortium reference 
panel, with its much larger sample size and better characterization 
of low frequency and rare variants, could improve fine-mapping 
resolution for variants with a MAF ≤ 1%59.

Finally, this large-scale EAS sample allowed us to empirically 
evaluate the congruence of the genetic basis of schizophrenia 
between EAS and EUR. Despite a cross-population common variant 
genetic correlation being highly consistent, we found that polygenic 
risk models trained in one population have reduced performance 
in the other population due to different allele frequency distribu-
tions and LD structures. This highlights the importance of includ-
ing all major ancestral groups in genomic studies, both as a strategy 
to improve the power to find disease associations, and to ensure that 
the findings have maximum relevance for all populations.
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Methods
Overview of samples. EAS samples. Full genome. Genome-wide genotype data 
were obtained from 16 samples from East Asia (Supplementary Table 1). Two of 
these samples (TAI-1 and TAI-2) had parent–offspring trios and were processed 
as case/pseudo-controls. The Diagnostic and Statistical Manual of Mental 
Disorders (fourth edition)60 was used for diagnosing all schizophrenia cases in 
these samples, except for the trios (TAI-1 and TAI-2), for which the Diagnostic 
Interview for Genetic Studies61 was used. All samples were processed according 
to the quality control procedures reported in ref. 2, with details reported in the 
following sections. After quality control, genotypes were phased and imputed 
against the 1000 Genomes Project Phase 3 reference panel6. Principal component 
analysis (PCA) was conducted across samples via imputed best-guess genotypes to 
identify and remove overlapping samples across datasets, cryptic related samples 
and population outliers. Eight principal components that were associated with 
case-control status were included in univariate logistic regression as covariates to 
control for the population stratification in each sample.

Selected variants. Summary statistics were obtained for a set of variants from 
four EAS samples (BJM-2, BJM-3, BJM-4 and BIX-5) that had been analyzed 
in published studies7,8. The summary statistics included odds ratios, standard 
errors, reference and tested alleles for variants that had P < 10−5 in either stage 1 
or the meta-analysis combining stage 1 and EUR samples. Between 22,156 and 
31,626 variants were available after the exclusion of strand-ambiguous62 variants 
(Supplementary Table 2).

EUR samples. Genotypes for EUR schizophrenia patients and controls were 
obtained from the Psychiatric Genomics Consortium, as reported in ref. 2. All 
samples of EUR ancestry were included in this study except for the deCODE 
samples (1,513 cases and 66,236 controls). We also note that three sample 
collections of EAS ancestry reported in ref. 2 (IMH-1, HNK-1 and JPN-1) were 
not included in the EUR samples in our analysis, but were included in the EAS 
samples. The same procedures used in processing EAS samples were applied to the 
EUR samples.

EAS subpopulations. To investigate the heterogeneity of schizophrenia genetics 
effects within EAS, we grouped the samples based on their principal components. 
Other than Indonesians (UWA-1), who fall into their own subpopulation, samples 
were grouped into the Northeast Asian subpopulation if their average principal 
component 2 score was significantly greater than 0 (BIX-2, BJM-1, XJU-1, JPN-1 
and KOR-1) and into the Southeast Asian subpopulation if their average principal 
component 2 score was significantly less than 0 (TAI-1, TAI-2, IMH-1, IMH-2, 
HNK-1 and BIX-3). The remaining samples (UMC-1, SIX-1, BIX-1 and BIX-4) 
were not included in the subpopulations. The heterogeneity test (Cochran’s Q) 
across subpopulations (calculated pairwise and across all) was conducted using 
RICOPILI63.

Quality control. Quality control procedures were carried out as part of the 
RICOPILI pipeline63 with the following steps and parameters: (1) excluding 
variants with a call rate below 95%; (2) excluding subjects with a call rate below 
98%; (3) excluding monomorphic variants; (4) excluding subjects with an inbred 
coefficient above 0.2 and below −0.2; (5) excluding subjects with a mismatch 
in their reported sex and chromosome X imputed sex; (6) excluding variants 
with missing rate differences >2% between cases and controls; (7) subsequent 
to step 6, excluding variants with a call rate <98%; and (8) excluding variants in 
violation of Hardy–Weinberg equilibrium (P < 10−6 for controls or P < 10−10 for 
cases). The numbers of variants or subjects removed in each step are reported in 
Supplementary Table 2.

Phasing and imputation. All datasets were phased using SHAPEIT64 and 
IMPUTE2 (ref. 65) using regular steps and parameters. Additional processing for 
trios (TAI-1 and TAI-2) was carried out such that case/pseudo-controls were 
identified and imputed. All samples were imputed to the 1000 Genomes Project 
Phase 3 reference panel66 (2,504 subjects, including 504 EAS subjects). Imputation 
procedures resulted in dosage files and best-guess genotypes in PLINK67 binary 
format. Dosage files were used for subsequent association analysis, while best-guess 
genotypes were used in the PCA and PRS analyses.

Sample overlaps, population outliers and population stratification. We used 
EIGENSTRAT68 to calculate the principal components for all of the samples using 
the best-guess genotypes from imputation (Extended Data Fig. 10b). We computed 
the identity-by-descent matrix to identify intra- and inter- dataset sample overlaps. 
Samples with pi-hat > 0.2 were extracted, followed by a Fisher–Yates shuffle on 
all samples. The number of times each sample was related to another sample was 
tracked, and samples that were related to more than 25 samples were removed. 
When deciding which samples to retain, trios were preferred, followed by cases, 
and thereafter a random sample for each related pair was removed, resulting in the 
removal of 704 individuals.

To identify population outliers, k-means clustering was conducted using the 
first 20 principal components from PCA and covariates representing each of the 13 

stage 1 samples. Guided by the results of k-means clustering and visual inspection 
of PCA plots, 46 individuals were identified as outliers and were excluded. Further 
population-level inspection was carried out by merging the 1000 Genomes Project 
Phase 1 reference samples with stage 1 samples and conducting PCA (Extended 
Data Fig. 10a). Using similar approaches to those reported above, no further 
samples were excluded as population outliers.

Eight principal components that were associated with case/control status with 
P < 0.2 were used as covariates for association analysis in each sample (principal 
components 1, 4, 5, 6, 8, 9, 15 and 19). QQ plots (Extended Data Fig. 1) showed 
that the population structure was well controlled.

Association analysis and meta-analysis. Association analysis was carried out for 
each sample using PLINK67 and genotype dosage from imputation. Only variants 
with imputation INFO ≥ 0.6 and a MAF ≥ 1% were included in the analysis. We 
performed logistic regression with principal components identified in the previous 
subsection as covariates to control for population stratification within each study. 
Fixed-effect meta-analysis69, weighted by inverse variance, was then used to 
combine association results across samples. A meta-analysis for EUR samples was 
conducted in the same manner. To find independent schizophrenia associations 
in both EUR and EAS populations (Supplementary Table 6), we performed LD 
clumping twice using the 1000 Genomes Project Phase 3 EUR and EAS reference 
panels, respectively (with default parameters in RICOPILI).

Chromosome X analysis. Chromosome X genotypes were processed separately 
from autosomal variants. Quality control was conducted separately for males and 
females, using similar quality control parameters as above. Cases and pseudo-
controls were built out of the trios. Phasing and imputation were then performed 
on males and females separately for each sample, followed by logistic regression 
with the same principal components, and meta-analysis combining samples (same 
parameters as the autosomal analyses). The results were generated for EAS stage 
1 samples and EUR and EAS combined (excluding BIX-1, BIX-2 and BIX-3). EAS 
stage 2, BIX-1, BIX-2 and BIX-3 samples did not have chromosome X data and 
were therefore not analyzed.

Genetic correlation and heritability. Schizophrenia heritabilities in the observed 
scale for samples of EUR and EAS ancestry were estimated from their summary 
statistics using LDSC23. We converted the heritabilities in the observed scale to a 
liability scale assuming a schizophrenia population prevalence of 1%. The LD scores 
were pre-computed from the 1000 Genomes Project Phase 3 reference panel in EUR 
and EAS, respectively (https://github.com/bulik/ldsc). Only autosomal variants 
with a MAF > 5% in their respective population were included in the analysis, and 
variants in the MHC region were not included due to the long-range LD.

We computed the genetic correlations between schizophrenia and other traits 
within EUR and across EUR and EAS. EUR and EAS (stage 1 only) summary 
statistics for autosomal variants from this study were used as schizophrenia genetic 
association inputs for their respective populations. The traits tested included 
schizophrenia2, bipolar70, major depression71, anorexia nervosa72, neuroticism 
and subjective well-being73, autism spectrum disorder (‘GWAS - 2015’ release; 
available at http://www.med.unc.edu/pgc), attention deficit hyperactivity 
disorder (‘European Ancestry GWAS’; available at http://www.med.unc.edu/
pgc)74, educational attainment30, general intelligence75, fluid intelligence score 
and prospective memory result (using individuals from UK Biobank; http://
www.nealelab.is/uk-biobank). Only variants with a MAF > 5% were available and 
included. Variants in the MHC region were excluded from the analysis. Genetic 
correlations within EUR were computed using LDSC with LD scores pre-computed 
on the 1000 Genomes Project Phase 3 reference panel (503 EUR subjects). Genetic 
correlations across EUR and EAS were computed using POPCORN29. POPCORN 
uses a Bayesian approach that assumes that genotypes are drawn separately 
from each population and effect sizes follow the infinitesimal model. Genetic 
correlations in POPCORN were computed in the ‘genetic effect’ mode, which 
estimates the correlation based on the LD covariance scores and effect sizes from 
summary statistics.

Partitioned heritability. Partitioned LDSC34 was conducted to look for heritability 
enrichment in diverse annotations using EAS (stage 1) and EUR autosomal 
variants (summary statistics), respectively. LD scores for each annotation were 
computed using a combination of PLINK67 and LDSC23, using the 1000 Genomes 
Project EAS and EUR subjects, respectively. We used baseline annotations34 
and additional annotations including chromatin accessibility in the brain 
dorsolateral prefrontal cortex, as determined via assay for transposase-accessible 
chromatin using sequencing peaks (Bryois et al.35; ‘ATAC Bryois’), conserved 
regions (Lindblad-Toh et al.36; ‘Conserved LindbladToh’) located via the assay 
for transposase-accessible chromatin using sequencing peaks35, and introgressed 
regions from Neanderthals76 (‘Neanderthal Vernot’). Variants can be included in 
multiple annotations. Multi-allelic variants were removed.

Gene set analysis. We performed gene- and gene set-based tests using MAGMA37. 
Genome-wide summary statistics for autosomal variants from EAS, EUR and 
EAS + EUR meta-analyses were used in this analysis. Variant-to-gene annotation 
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was performed using RefSeq NCBI37.3 with a window of 5 kb upstream and 
1.5 kb downstream. LD was taken from the 1000 Genomes Project EAS, EUR 
and EUR + EAS panels, respectively. The gene-based P values were computed 
by F-test and multivariate linear modeling, and competitive tests were used 
for gene set analysis. A total of 70 gene sets were selected and tested in this 
study (Supplementary Table 8), including those from the Molecular Signatures 
Database77, those related to psychiatric diseases38,78,79 and those from gwaspipeline 
(https://github.com/freeseek/gwaspipeline/blob/master/makegenes.sh). Gene sets 
were ranked for EUR, EAS and EAS + EUR analyses, respectively. The top-ranking 
gene sets were compared across analyses to identify common schizophrenia 
pathways. Additionally, Wilcoxon signed-rank tests were conducted to compare the 
ranking of gene sets between the EUR and EAS datasets.

Natural selection analysis. We used the Han Chinese in Beijing (CHB) and Utah 
residents with ancestry from northern and western Europe (CEU) panels from 
the 1000 Genomes Project Phase 3 to investigate the natural selection signatures 
in schizophrenia-associated loci for the EAS and EUR populations, respectively. 
We used the following selection signatures, with their sensitivity to timeframes 
discussed in ref. 3.

Integrated haplotype score (iHS). The iHS captures the haplotype homozygosity at 
a given variant. We calculated iHS using the R rehh package80. Genetic distance 
between variants was determined using the HapMap phase II genetic map. 
Ancestral and derived alleles were obtained from the 1000 Genome project, which 
inferred the ancestral state using six primates on the Enredo–Pecan–Ortheus 
pipeline. Only biallelic variants that with a MAF ≥ 5% were included in the analysis.

Cross-population extended haplotype homozygosity (XPEHH). XPEHH81 detects 
variants under selection in one population but not the other. We used CEU as the 
reference panel when calculating XPEHH for CHB, and vice versa.

FST. FST measures the population differentiation due to genetic structure. We 
estimated FST using the Weir and Cockerham approach82, which is robust to 
sample-size effects.

Absolute derived allele frequency difference (|ΔDAF|). |ΔDAF| measures population 
differentiation between CHB and CEU populations.

Composite of multiple signals (CMS). CMS83–86 combines iHS, XPEHH, FST and 
|ΔDAF|. As a result, CMS potentially has better power to detect the selection 
signature. For each variant, CMS ¼

Qn
i¼1 pi

I
, in which pi is the rank of the variant 

using method i, sorted by increasing P values, divided by the total number of 
variants.

B statistic. The B statistic measures the background selection. We calculated the B 
statistic as in ref. 85.

Trans-ethnicity fine-mapping. For a disease-associated genetic locus, fine-
mapping defines a ‘credible set’ of variants that contains the causal variant 
with certain probability (for example, 99% or 95%). Bayesian fine-mapping 
approaches2,43,87,88 have been widely used for studies of a single ancestry. Here, we 
extended a Bayesian fine-mapping approach87 (defining credible sets; Methods) to 
studies of more than one ancestry. Intuitively, the extension was achieved through 
a prior calculated from the heterogeneity across ancestries, such that variants with 
different odds ratios across populations have a smaller prior probability to be the 
causal variant.

As in several previous studies2,87, we restricted our fine-mapping analysis to 
the primary association signal in each locus. This was done by taking P variants 
that were in LD with the lead variant (the variant with the most significant 
P value), with r2 > 0.1 in EUR or EAS. Assume that D represents the data including 
the genotype matrix X for the P variants and disease Y for N individuals, and β 
represents a collection of model parameters. We define the model, denoted by A, as 
the causal status for the P variants in locus A≡{aj}, in which aj is the causal status 
for variant j. aj = 1 if the variant j is causal, and aj = 0 if it is not. For the primary 
association signal and under the presumption that the causal variant is the same 
across all ancestries, one and only one of the P variants is causal: 

P
j
aj ¼ 1

I

. For 

convenience, we define Aj as the model in which only variant j is causal, and A0 as 
the model in which no variant is causal (the null model). The probability of model 
Aj (where variant j is the only causal variant in the locus), given the data (D), can 
be calculated using Bayes’ rule:

Pr AjjD
� �

¼ Pr DjAj
� � Pr Aj

� �

Pr Dð Þ
With the steepest descent approximation, the assumption of a flat prior on the 
model parameters (β), and the assumption of one causal variant per locus (equation 
(2) in ref. 87), Pr(Aj|D) can be approximated as:

Pr AjjD
� �

 Pr DjAj; β̂j

� �
N�1=2 Pr Aj

� �

Pr Dð Þ
ð1Þ

in which N is the sample size. We denote χj
2 as the χ2 test statistic for variant j, 

which can be calculated from the P value from the meta-analysis combining the 
EAS and EUR samples. Using equation (3) in ref. 87, we have:

Pr DjAj; β̂j

 
 exp

χ2j
2

 !
Pr DjA0; β̂0
� 

ð2Þ

Pr(Aj) is the prior probability that variant j is causal. We have shown that 
schizophrenia causal variants have consistent genetic effects across populations. 
Therefore, we model the prior probability as a function of the heterogeneity 
measured in I2:

Pr Aj
� �

¼ 1� I2j ð3Þ

Using equations (2) and (3), Pr(Aj|D) in equation (1) can be calculated as:

Pr AjjD
� 

 exp
χ2j
2

 !
1� I2j

 N�1=2

Pr Dð Þ Pr DjA0; β̂0
� 

We only use stage 1 samples in fine-mapping, so the variants have the same 
sample size (assuming all variants have good imputation quality). Therefore, N−1/2, 
Pr(D) and Pr DjA0; β̂0

� �

I
 can be regarded as constants:

Pr AjjD
� 

/ exp
χ2j
2

 !
1� I2j

 

The normalized causal probability for variant j is then:

P Aj
� 

¼ Pr AjjD
� 

=
X

k

Pr AkjDð Þ

And the 95% credible set of variants is defined as the smallest set of variants, S, 
such that:

X

Aj2S
P Aj
� 

≥95%

PRS analysis. We constructed PRSs using a pruning and thresholding approach 
in EAS individuals with training summary statistics from either EUR or EAS 
individuals. For EUR, we used summary statistics from all EUR individuals in this 
study, whereas for EAS, we used a leave-one-out meta-analysis approach across the 
13 EAS stage 1 sample collections to build the PRS.

For the EUR training data, we extracted EUR individuals (FIN, GBR, CEU, 
IBS and TSI) from the 1000 Genomes Project66 Phase 3 as an LD reference 
panel to greedily clump variants. For the EAS LD reference panel, we created 
two panels: (1) an analogous EAS panel (CDX, CHB, CHS, JPT and KHV) 
from the 1000 Genome Project66 Phase 3 (Fig. 4 and Extended Data Fig. 8c,d); 
and (2) an LD panel from best-guess genotypes from each cohort in the study 
(Extended Data Fig. 8a,b,e,f). For both the EAS and EUR prediction sets, we 
filtered to variants with MAF > 1% in each respective population, and removed 
indels and strand-ambiguous variants. We subset each list of variants to those 
in the summary statistics with an imputation INFO > 0.9. We then selected 
approximately independent loci at varying P value thresholds or top-ranking 
n variants using an LD threshold of r2 ≤ 0.1 in a window of 500 kb in PLINK67 
with the --clump flag. We treated the MHC with additional caution to minimize 
overfitting by selecting only the most significant variant in this region. To profile 
variants, we multiplied the log[odds ratio] for selected variants by genotype 
dosages, and summed these values across the genome in PLINK67 using the 
--score flag for each of the 13 EAS stage 1 samples. We assessed case/control 
variance explained by computing Nagelkerke’s R2 and a liability-scale pseudo-R2, 
as in Lee et al.89, by comparing a full model with the PRS and ten principal 
components with a model excluding the PRS. The results of PRS were presented 
in two ways. First, we selected SNPs based on GWAS P value thresholds (that is, 
5 × 10−8, 1 × 10−6, 1 × 10−4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1) and P value ranks. 
Second, top-ranked SNPs that existed between both EUR and EAS summary 
statistics were selected based on the SNP rank thresholds (that is, the top 100, 
1,500, 5,000, 15,000, 25,000, 35,000 and 50,000, and all).

Ethics. The study protocols were approved by the institutional review board at each 
center involved with recruitment. Informed consent and permission to share the 
data were obtained from all subjects, in compliance with the guidelines specified 
by the recruiting center’s institutional review board. Samples recruited in mainland 
China were processed and analyzed in a Chinese server to comply with the Interim 
Measures for the Administration of Human Genetic Resources (a regulation from 
the Ministry of Science and Technology of the People’s Republic of China). We set 
up the computer codes on the Chinese server so that analyses performed on these 
samples were exactly the same as other samples. Summary statistics from these 
Chinese samples, with no individual-level data, were then shared and combined 
with the rest of the EAS samples.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics relating to the EAS samples, EUR samples 
(n = 49) and all samples combined (that is, EAS and EUR) can be downloaded 
from https://www.med.unc.edu/pgc/. Individual-level genotype data for EAS 
samples are available on request from the contact authors (Supplementary Note). 
Alternatively, requests can be made to the Psychiatric Genomics Consortium. In 
this case, access to individual-level genotypes from samples recruited outside of 
mainland China will go through the Psychiatric Genomics Consortium’s fast-track 
approval system. Access to individual-level genotypes from samples recruited 
within mainland China has to be approved by the individual Chinese contact 
authors (Supplementary Note), and are subject to the policies and approvals from 
the Human Genetic Resource Administration, Ministry of Science and Technology 
of the People’s Republic of China. Individual-level genotypes from samples 
recruited within mainland China are stored and kept in a server physically located 
in mainland China. Analyses were performed on these samples using the same 
computer codes as those used for other EAS and EUR samples, which are available 
in the ‘Code availability’ section.

Code availability
Computer code relating to this study includes: RICOPILI (quality control, PCA, 
pre-phasing, imputation, association test and meta-analysis; https://github.
com/Nealelab/ricopili/wiki); The following code is embedded within RICOPILI 
(EIGENSTRAT; https://github.com/DReichLab/EIG/tree/master/EIGENSTRAT; 
SHAPEIT, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.
html; EAGLE, https://github.com/poruloh/Eagle; IMPUTE, https://mathgen.stats.
ox.ac.uk/impute/impute_v2.html; Minimac, https://genome.sph.umich.edu/wiki/
Minimac); POPCORN (trans-ancestry genetic correlation; https://github.com/
brielin/Popcorn); LDSC (heritability, partitioned heritability and within-ancestry 
genetic correlation; https://github.com/bulik/ldsc); MAGMA (pathway analysis; 
https://ctg.cncr.nl/software/magma); fine-mapping (fine-mapping and PAINTOR; 
https://github.com/hailianghuang/FM-summary and https://github.com/gkichaev/
PAINTOR_V3.0, respectively); rehh (selection; https://cran.r-project.org/web/
packages/rehh/index.html); B score (background selection; http://www.phrap.org/
othersoftware.html); and PRS analyses (https://github.com/armartin/pgc_scz_asia).
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Extended Data Fig. 1 | Quantile-quantile (QQ) plots. a-p, QQ plots for two-tailed logistic regression in each eAS stage 1 sample (a-m) and fixed effect 
inverse variance meta-analyses including all eAS stage 1 samples (n), stages 1 and 2 samples (o), and all eUr and eAS (stages 1 and 2) samples (p). 
blue line indicates the expected null distribution, and the shaded area indicates the 95% confidence interval of the null distribution. Legend: “lambda” 
= genomic inflation factor; “lambda1000” = genomic inflation factor for an equivalent study of 1,000 cases and 1,000 controls; “N(pvals)” = number of 
variants used in the plot. Autosomal variants that have minor allele frequency ≥ 1% and INFO ≥ 0.6 from imputation were included. Observed P-values 
were capped at 10-12 for visualization purposes.
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Extended Data Fig. 2 | Heritability and genetic correlation. a, Heritability (h2) for the eAS stage 1 (n = 13,305 cases; 16,244 controls) and eUr samples 
(n = 33,640 cases; 43,456 controls). Sample description applies to b-d. error bars indicate the 95% confidence interval. b, Genetic correlation between 
schizophrenia and other traits within eUr (blue) and across eAS and eUr (red). error bars indicate the 95% confidence interval. c, enrichment and 
its corresponding significance for heritability partitioned based on various annotations. error bars indicate the 95% confidence interval. d, Scatterplot 
showing the enrichment versus the significance for heritability partitioned based on various annotations. more details are available in methods.
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Extended Data Fig. 3 | Gene-sets implicated by schizophrenia genetic associations. a, Overlap of implicated gene-sets across eAS stage 1 (n = 13,305 
cases; 16,244 controls) and eUr samples (n = 33,640 cases; 43,456 controls). b, List of the top 10 gene-sets implicated in the eAS and eUr samples and 
their mAGmA Gene-Set Analysis P-values in -log10 scale. Descriptions of the gene-sets are available in Supplementary Table 8.
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Extended Data Fig. 4 | Natural selection signals in EAS and EuR. a, Distributions of natural selection signals in the top 100 schizophrenia associations in 
eAS (red) and eUr (blue). b, Scatterplot of Fst versus the heterogeneity of effect size for schizophrenia associations. more details are available in methods.
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Extended Data Fig. 5 | Quantile-quantile (QQ) plots for heterogeneity within EAS. a, Heterogeneity QQ-plot across Northeast Asian and Indonesian 
samples. b, Heterogeneity across Southeast Asian and Indonesian samples. c, Heterogeneity QQ-plot across Northeast Asian and Southeast Asian 
samples. d, Heterogeneity QQ-plots across all three subpopulations. cochran Q-test used to compute heterogeneity effects (a-d).
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Extended Data Fig. 6 | Trans-ethnicity fine-mapping. Illustration of the fine-mapping method.
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Extended Data Fig. 7 | Variance explained for schizophrenia associations across EuR and EAS samples. Genome-wide significant associations that have 
variance explained greater than 0.05% in either eAS or eUr samples were plotted. One locus can host multiple independent associations. Different mAF 
is defined as Fst > 0.01, and different Or is defined as heterogeneity test P-value < 0.05 after bonferroni correction. Nearest genes to the associations 
were used as labels for associations when the text space is available, with the exception that the mHc locus was labeled as “mHc”.
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Extended Data Fig. 8 | Genetic risk prediction accuracy in EAS from EAS or EuR training data. As in Fig. 4, PrS shows case/control variance explained 
with eUr and eAS samples using a leave-one-out meta-analysis approach for the eAS samples. error bars indicate the 95% confidence intervals. a,b, 
Liability-scale variance explained when LD panel for clumping is from eUr 1000 Genomes Phase 3 samples and best-guess genotypes are from each 
eAS cohort. c,d, Nagelkerke’s R2 for eAS prediction accuracy when LD panel for clumping is from eUr and eAS 1000 Genomes Phase 3 samples. e,f, 
Nagelkerke’s R2 for eAS prediction accuracy when LD panel for clumping is from eUr 1000 Genomes Phase 3 samples and best-guess genotypes are from 
each eAS cohort. a-f, eAS stage 1 (n = 13,305 cases; 16,244 controls) and eUr samples (n = 33,640 cases; 43,456 controls).
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Extended Data Fig. 9 | Ratio of the heterozygote rate in EAS to that in EuR for existing and new loci. Het(eAS) and Het(eUr), calculated as 2f(1−f), 
are the heterozygote rates for a variant in eAS and eUr respectively, in which f is the variant allele frequency in eAS or eUr. Power to identify genetic 
associations increases with the expected non-centrality parameter for the association, which is proportional to the heterozygote rate. Therefore, we use 
the ratio of the heterozygote rate in eAS to that in eUr as a measure of the relative power to identify genetic association of the same effect size in the two 
populations. A ratio greater than 1 means that eAS samples have more power to identify the association and vice versa. existing loci are those that are 
genome-wide significant in the previous study of european ancestry2, and new loci are those that are genome-wide significant just in this study combining 
eAS and eUr samples. Sample sizes utilized were eAS stage 1 (n = 13,305 cases; 16,244 controls) and eUr samples (n = 33,640 cases; 43,456 controls).

NATuRE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


1

nature research  |  reporting sum
m

ary
O

ctober 2018

Corresponding author(s): Hailiang Huang

Last updated by author(s): Jul 24, 2019

Reporting Summary
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No other direct software used for data collection. Genome Studio v1.9.4 used for extracting Plink binary genotype files. 

Data analysis Computer code used in this manuscript: RICOPILI (quality control, principal component analysis, pre-phasing, imputation, association test 
and meta-analysis) https://github.com/Nealelab/ricopili/wiki; embedded within RICOPILI (Eigenstrat https://github.com/DReichLab/EIG/
tree/master/EIGENSTRAT; SHAPEIT https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html; EAGLE https://github.com/
poruloh/Eagle; IMPUTE https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; Minimac https://genome.sph.umich.edu/wiki/Minimac); 
POPCORN (trans-ancestry genetic correlation): https://github.com/brielin/Popcorn; LDSC (heritability, partitioned heritability and within-
ancestry genetic correlation): https://github.com/bulik/ldsc; MAGMA (pathway analysis): https://ctg.cncr.nl/software/magma; Fine-
mapping (Fine-mapping and PAINTOR):  https://github.com/hailianghuang/FM-summary, https://github.com/gkichaev/PAINTOR_V3.0; 
REHH (selection): https://cran.r-project.org/web/packages/rehh/index.html; B score (background selection): http://www.phrap.org/
othersoftware.html; PRS analyses: https://github.com/armartin/pgc_scz_asia 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Genome-wide summary statistics from EAS samples, EUR samples (“49 EUR samples”) and all samples (EAS and EUR combined) in this study can be downloaded 
from https://www.med.unc.edu/pgc/results-and-downloads/. Individual-level genotype data for EAS samples are available upon request to contact authors 
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(Supplementary Information). Alternately, requests can be made to the Psychiatric Genomics Consortium (PGC). In this case, access to individual-level genotypes 
from samples recruited outside of mainland China will go through the PGC “fast-track” approval. Access to individual-level genotypes from samples recruited within 
mainland China has to be approved by the individual Chinese contact authors (Supplementary Information), and are subject to the policies and approvals from the 
Human Genetic Resource Administration, Ministry of Science and Technology of the People’s Republic of China. Individual-level genotypes from samples recruited 
within mainland China have been stored and kept in a server physically located in mainland China. Analyses were performed on these samples using the same 
computer codes as those used for other EAS and EUR samples, which are available in the Code availability section. 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Previous studies of European individuals suggest that a sample size of over 100,000 individuals may be needed to saturate the power of 
schizophrenia genetic loci discovery. We have not reached this sample size but have included all major East Asian samples that are available 
date in the current study. 

Data exclusions We used standard quality control procedures for genome-wide association studies. Quality control procedures were carried out as part of the 
RICOPILI pipeline (https://sites.google.com/a/broadinstitute.org/ricopili/home; Lam et al., 2019) with the following steps and parameters: 1) 
Excluding variants with call rate below 95%; 2) Excluding subjects with call rate below 98%; 3) Excluding monomorphic variants; 4) Excluding 
subjects with inbred coefficient above 0.2 and below -0.2; 5) Excluding subjects with mismatch in reported gender and chromosome X 
computed gender; 6) Excluding variants with missing rate differences greater than 2% between cases and controls; 7) Subsequent to step 6, 
exclude variants with call rate below 98%; and 8) Exclude variants in violation of Hardy-Weinberg equilibrium (P < 10-6 for controls or P < 
10-10 for cases). Numbers of variants or subjects removed in each step were reported in Supplementary Table 2. Additionally, We used 
Eigenstrat66 to calculate the principal components for all the samples using the best guess genotypes from imputation (Supplementary Figure 
9b). We computed the identity-by-descent matrix to identify intra- and inter- dataset sample overlaps. Samples with pi-hat > 0.2 were 
extracted, followed by Fisher-Yates shuffle on all samples. The number of times with which each sample was related to another sample was 
tracked and samples that were related to more than 25 samples were removed. When deciding which samples to retain, trio were preferred, 
followed by cases, and thereafter a random sample for each related pair was removed, 704 individuals were removed.  
To identify population outliers, k-means clustering was conducted using the first 20 PCs from PCA and covariates representing each of the 13 
Stage 1 samples. Guided by results of k-means clustering and visual inspection of PCA plots, 46 individuals were identified as outliers and were 
excluded. 
 
These steps are considered standard procedures to retain high quality samples fro the data-analysis. 

Replication The current study employs a two-stage study. Stage 2 serves the purpose replication. 

Randomization No randomization was conducted. The current study is a large-scale genetics study. Randomness is achieved from the nature of how alleles 
are relatively distributed in the population. Alleles are randomly passed from parent to offspring during meiosis, hence the nature of these 
types of studies tend to be shielded from extraneous confounds of standard epidemiological studies. 

Blinding No blinding was carried out. The nature of the study is in of itself blind to study recruiters. No one would beforehand know the genotype 
make up of the cases and controls recruited in the current study. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Population characteristics The following samples were used in this study: 
EAS samples, full-genome: genome-wide genotype data was obtained from 16 samples from East Asia (Supplementary Table 1). 
Two of these samples (TAI-1 and TAI-2) had parents off-spring trios and were processed as case/pseudo-controls. DSM-IV was 
used for diagnosing all schizophrenia cases in these samples except for the trios (TAI-1 and TAI-2), for which DIGS was used.  
 
EAS samples, selected variants: summary statistics was obtained for a set of variants from four EAS samples (BJM-2, BJM-3, 
BJM-4, BIX-5) which had been analyzed in published studies7,8. The summary statistics included odds ratio, standard error, 
reference and tested alleles for variants that have P<10-5 in either Stage 1 or the meta-analysis combining Stage 1 and EUR 
samples. Between 22,156 and 31,626 variants were available after the exclusion of strand ambiguous60 variants (Supplementary 
Table 2). 
 
EUR samples: Genotypes for EUR schizophrenia patients and controls were obtained from the Psychiatric Genomics Consortium 
as reported in ref 2. All samples of EUR ancestry were included in this study except for the deCODE samples (1,513 cases and 
66,236 controls). We also like to note that three samples of EAS ancestry reported in this publication were not included in the 
EUR samples in our analysis but were included in the EAS samples (IMH-1, HNK-1 and JPN-1). The same procedures used in 
processing EAS samples were applied to the EUR samples.

Recruitment East Asian Ancestry Cohorts: Stage 1 Discovery and Stage 2 Replication 
Sample: IMH-1, HNK-1 and JPN-1 
Type: Case-Control 
Contact: IMH-1: Liu, Jianjun (liuj3@gis.a-star.edu.sg) and Lee, Jimmy (jimmy_lee@imh.com.sg); HNK-1: Sham, Pak 
(pcsham@hku.hk); JPN-1: Iwata, Nakao (nakao@fujita-hu.ac.jp) 
Description: These samples were included in a previous publication1. Description of these samples can be found on Page 11 of 
the Supplementary Information in the publication (“East Asian ancestry, case-control design” subsection). Mapping between the 
study identifiers: IMH-1=scz_tcr1_asn; HNK-1=scz_hok2_asn; JPN-1=scz_jpn1_asn. 
 
Sample: IMH-2 
Type: Case-Control 
Contact: Liu, Jianjun (liuj3@gis.a-star.edu.sg) and Lee, Jimmy (jimmy_lee@imh.com.sg) 
Description: Subjects were part of the Singapore Translational and Clinical Research in Psychosis (STCRP) Study, and comprised of 
cases and healthy controls of Chinese ancestry. Schizophrenia cases were recruited from the Institute of Mental Health, 
Singapore. Diagnosis of schizophrenia was made using the Structured Clinical Interview for DSM-IV, Research Version, Patient 
Edition (SCID-I/P) by trained raters. And healthy controls were screened using the DSM-IV, Research Version, Non-Patient Edition 
(SCID-N/P). All participants gave consent according to IRB/DSRB guidelines prior to participating. 
 
Sample: BIX-1, BIX-2, BIX-3 and BIX-5 
Type: Case-Control 
Contact: Shi, Yongyong (shiyongyong@gmail.com) 
Description: BIX1, BIX2 and BIX3: Participants in the schizophrenia group were in-patients or out-patients who were recruited 
from various mental health centres. The patients were interviewed by two independent psychiatrists and were diagnosed 
according to the DSM-IV criteria, and had two-year histories of the disorder. All met the following two criteria: preoccupation 
with one or more delusions and frequent auditory hallucinations. However, none of the following symptoms were prominent: 
disorganised speech, disorganised or catatonic behaviour, or flat or inappropriate affect. All healthy controls were randomly 
selected from Chinese Han volunteers (from hospitals and a community survey) who were asked to reply to a written invitation 
to evaluate their medical histories. Potential lists of controls were screened for suitable volunteers by excluding individuals with 
major mental illnesses. The study had been previously reported2. BIX5: Case were schizophrenia patients according to DSM-IV 
criteria, and controls were volunteers with no psychiatric history. All the cases and controls were of Han Chinese ancestry, and 
recruited in the mainland of China. Further details for ascertainment, inclusion/exclusion criteria, and other information have 
been previously described3,4. Approval was obtained from the Ethics Committee of Human Genetic Resources at the Bio-X 
Institutes of Shanghai Jiao Tong University, in accordance with the tenets of the Declaration of Helsinki, and all participants 
provided written, informed consent. The genotyping was conducted at Bio-X Institutes at Shanghai Jiao Tong University, and 
details were provided in previous publication3.  
 
Sample: XJU-1 and BIX-4 
Type: Case-Control 
Contact: Qin, Shengying (chinsir@sjtu.edu.cn)  
Description: XJU-1: Schizophrenia patients were recruited from the inpatients in nine clinical centers in Shaan Xi Province, China, 
including 1) Department of Psychiatry of  the First Affiliated Hospital of Xi'an Jiaotong University (TFAHXJTU) and Mental Health 
Centers of 2) Baoji City, 3) Xianyang City, 4) Weinan City, 5) Hanzhong City, 6) Huayin City, 7)Yulin City, 8)Yanan City. Healthy 
controls were recruited from native residents of communities and villages in the city that each clinical center located in. Two 
professional psychiatrists interviewed all participants and evaluated their mental status according to DSM-IV criteria using SCID 
and/or Mini-International Neuropsychiatric Interview. The present study was approved by the Medical Ethics Committee of 
TFAHXJTU. All subjects participated voluntarily and signed written informed consent prior to the enrollment. BIX-4: Subjects 
were recruited from the Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine between August 2015 
and August 2017. Patients were diagnosed by at least two experienced psychiatrists according to the DSM-IV based on 
structured Clinical Interview for DSM-IV Axis 1 Disorders (SCID-1). Healthy controls were selected from the general public of 
Chinese population in Shanghai. The control subjects were also excluded with major mental illness and matched with patients in 
terms of age and gender. All the subjects were Han Chinese in origin. The study was approved by the Ethical Committee of 
Human Genetic Resources in Shanghai. All subjects or their guardians understood the procedure and gave written informed 



4

nature research  |  reporting sum
m

ary
O

ctober 2018
consent, according to the Declaration of Helsinki. 
 
Sample: UMC-1 and SIX-1 
Type: Case-Control 
Contact: Kahn, Rene (rene.kahn@mssm.edu) and Yu, Xin (yuxin@bjmu.edu.cn) 
Description: Funded by the Division of Neuroscience of the University Medical Center in Utrecht (UMC, Utrecht), a collaborative 
genetic study was developed between UMC Utrecht and Peking University Institute of Mental Health (PKUIMH). The goal of the 
study was to identify susceptibility genes that contribute to the development of schizophrenia and related disorders. Subjects 
were recruited from thirteen major cities across mainland China. All patients were interviewed with Structured Clinical Interview 
for DSM-IV axis I Disorder (SCID–I) by extensively trained Chinese psychiatrists and researchers involved in the study. All included 
patients fulfilled DSM-IV criteria for schizophrenia. The SCID interviews were tape-recorded and randomly checked by senior 
psychiatrists not involved in the recruitment of interviewing. Healthy controls were matched with patients in terms of age, 
gender, and geographic information, and educational level, ethnic and economic background and were free of a history of 
psychiatric illness based on GHQ-20 and SCL-90. Regular inter-rater reliability sessions and onsite check-ups were conducted to 
secure the long-term research quality. This study was approved by the institutional review boards of the participating hospitals, 
including that at UMC Utrecht. Written informed consent was obtained from all subjects after complete description of the study 
and its procedures. 
 
Sample: UWA-1 
Type: Case-Control 
Contact: Schwab, Sibylle (schwab@uow.edu.au)  
Description: Patients with schizophrenia admitted consecutively to psychiatric hospitals in the greater Jakarta area were 
informed about the study and were asked to sign the Informed Consent document for participation in interviews, blood 
withdrawal and subsequent genetic studies. The study was approved by the institutional review board of the University of 
Indonesia and by local Ethics Committees. Clinical consensus diagnosis of schizophrenia was made by psychiatrists according to 
the DSM-IV criteria. Non-psychiatric controls were recruited from students and staff of the University of Indonesia, Jakarta, and 
from the participating hospitals. Details of the study were previously reported5.  
 
Sample: BJM-1, BJM-2, BJM-3 and BJM-4 
Type: Case-Control 
Contact: Yue, Weihua (puh60380@bjmu.edu.cn) 
Description: All samples in BJM1 and BJM3 are of Northern Han Chinese origin, all participants in BJM2 are from northern China; 
and all participants in BJM4 are from a southern Han Chinese population. Consensus diagnoses were made by at least two 
experience psychiatrists according to the criteria for schizophrenia from DSM-IV. None of the subjects had sever medical 
complications or other psychiatric disorders. All healthy control individuals were clinically determined to be free of psychiatric 
disorders or family history of such disorders. The study was approved by the institutional review board of each hospital and 
written consent was obtained from all participants. Further information can be found in a previous publication6, with the 
following mapping between cohorts: BJM1 = GWAS3, BJM2 = GWAS1, BJM3 = GWAS2, and BMJ4 = GWAS4.  
 
Sample: TAI-1 and TAI-2 
Type: Trio 
Contact: Tsuang, Ming (mtsuang@ucsd.edu) and Hwu, Hai-Gwo (haigohwu@ntu.edu.tw) 
Description: Schizophrenia probands and their first-degree relatives were recruited from Schizophrenia Trio Genomic Research 
in Taiwan (S-TOGET) funded by National Institute of Mental Health. Schizophrenia patients were interviewed with the Diagnostic 
Interview for Genetic Studies (DIGS), which was designed specifically for family-genetic studies of schizophrenia and bipolar 
disorder. Research diagnostic assessment was made independently by two board-certified psychiatrists based on integrated 
clinical information of DIGS interview data and summary note of clinical course, symptom manifestations and social functioning 
derived from the records of the medical charts according to DSM-IV for schizophrenia. This study was approved by the 
institutional review boards of the participating hospitals. Written informed consent was obtained from all subjects after 
complete description. Study details have been reported elsewhere7.  
 
Sample: KOR-1 
Type: Case-Control 
Contact: Hong, Kyung Sue (hongks@skku.edu) 
Description: Patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria were 
recruited from the inpatient unit and outpatient clinic of Samsung Medical Center and Chonnam National University Hospital. 
South Korea. The healthy subjects consisted of volunteers from the community who were free of any history of clinically 
significant psychiatric symptoms. Written informed consent was obtained from all subjects after a complete explanation of the 
study. This study was approved by the institutional review boards of Samsung Medical Center and Chonnam National University 
Hospital. Details of the study have been previously reported8. 
 
** Note: We have carried out large scale recruitment of case-control samples across these sites. As the majority of these 
samples are of East Asian descent, we do not foresee potential bias pertaining to our conclusions of the current study - at the 
genomic level.  
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