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Population Histories of the United States
Revealed through Fine-Scale
Migration and Haplotype Analysis

Chengzhen L. Dai,1 Mohammad M. Vazifeh,2 Chen-Hsiang Yeang,3 Remi Tachet,2 R. Spencer Wells,4

Miguel G. Vilar,5 Mark J. Daly,6,7,8,9 Carlo Ratti,2,10 and Alicia R. Martin7,8,9,10,*

The population of the United States is shaped by centuries of migration, isolation, growth, and admixture between ancestors of global

origins. Here, we assemble a comprehensive view of recent population history by studying the ancestry and population structure of

more than 32,000 individuals in the US using genetic, ancestral birth origin, and geographic data from the National Geographic Geno-

graphic Project. We identify migration routes and barriers that reflect historical demographic events. We also uncover the spatial pat-

terns of relatedness in subpopulations through the combination of haplotype clustering, ancestral birth origin analysis, and local

ancestry inference. Examples of these patterns include substantial substructure and heterogeneity in Hispanics/Latinos, isolation-

by-distance in African Americans, elevated levels of relatedness and homozygosity in Asian immigrants, and fine-scale structure in

European descents. Taken together, our results provide detailed insights into the genetic structure and demographic history of the

diverse US population.
Introduction

The United States population is a diverse collection of

global ancestries shaped by migration from distant conti-

nents and admixture of recent migrants and Native Amer-

icans. Throughout the past few centuries, continuous

migration and gene flow have played major roles in

shaping the diversity of the US. Mixing between groups

that have historically been genetically and spatially

distinct have resulted in individuals with complex ances-

tries, while within-country migration has led to genetic

differentiation.1–13

Deeply characterizing population history is important

for understanding human evolution and demographic his-

tory, as well as for adequate study design when associating

genotypes to phenotypes.14–17 Earlier population genetic

studies in the US broadly characterized this structure, typi-

cally using a limited set of ancestry-informative markers or

uniparental mtDNA and Y chromosome DNA data.18 As

the cost of genetic technologies have dropped, more recent

studies have inferred population history with more com-

plete genome-wide data, typically using more than

100,000 SNPs ascertained via sequencing or genotyping.

Previous genetic studies of the US population have

sought to infer genetic ancestry and population

history primarily in European Americans, African Ameri-

cans, and Hispanics/Latinos.7–9,19,20 European American

ancestry is characterized by substantial mixing between

different ancestral European populations and, to a lesser
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extent, admixture with non-European populations.6,8,9

Isolation among certain European population, such as

Ashkenazi Jewish, French Canadian, and Finnish popula-

tions, have also resulted in founder effects.21–24 The

mixing of European settlers with Native Americans has

contributed to large variations in the admixture propor-

tions of different Hispanic/Latino populations.1,4,9 Among

Hispanics/Latinos, Mexicans and Central Americans have

more Native American ancestry; Puerto Ricans andDomin-

icans have more African ancestry; and Cubans have more

European ancestry.1,4 In African Americans, proportions

of African, European, and Native American ancestry vary

across the country and reflect migration routes, slavery,

and patterns of segregation between states.2,3,7,9,25

Although much effort has been made to understand the

genetic diversity in the US, fine-scale patterns of demog-

raphy, migration, isolation, and founder effects are still be-

ing uncovered with the growing scale of genetic data,

particularly for Latin American and African descendants

with complex admixture histories.26,27 At the same time,

there has been little research on the population structure

of individuals with East Asian, South Asian, and Middle

Eastern ancestry in the US.

Many previous studies have investigated specific popula-

tion histories in the US at relatively small scales—on the

order of hundreds to thousands of individuals. These

studies have provided deep insights into many specific

populations, with some well-powered to infer population

history across a breadth of ancestries. Some of these
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insights have been made by applying methods that are

computationally tractable only at smaller scales.28,29

More recently, however, important insights highlight the

need for broader and more comprehensive investigations

of population history. For example, recent studies have

shown that population structure is inaccurately captured

in small sample sizes.14,17 Additionally, millions of Ameri-

cans have been interested enough in their genetic ancestry

to pay direct-to-consumer companies for individual-level

genetic ancestry reports.8,9 The reliability of these reports

is high for many individuals, but they are dependent on

(1) the representativeness of their reference panel or

customer database, (2) completeness and accuracy of

multigenerational birth origin data, and (3) the application

of multiple approaches to gain holistic insights into popu-

lation history.

In this study, we comprehensively evaluate the popula-

tion history of more than 32,000 genotyped individuals

in the US who partook in the National Geographic Geno-

graphic Project, a not-for-profit public participation

research initiative to study human migration history.

This project has several distinct advantages compared to

other large-scale population genetics datasets. Participants

were genotyped with the GenoChip, a validated array of

�150,000 markers designed for genetic anthropology

that excludes medically related SNPs to protect the health

privacy of participants.30 Individual-level genetic data are

accessible to researchers around the world to answer

anthropological questions. Additionally, most participants

report birthplace and ethnicity data for themselves, their

parents, and their grandparents, enabling fine-scale in-

sights into recent history. Furthermore, participants report

their postal code when they participated in the study,

enabling analysis of intragenerational migration. These

data therefore enable high spatiotemporal resolution into

historical migration patterns. While these trends are

consistent with US history at the population scale, we

note that genetic ancestry patterns are not commensurate

with individual-level ethnicity (i.e., cultural identity).

Here, we leverage these advantages over existing data to

identify patterns of genetic ancestry by studying pairwise

sharing among the project participants. We combine these

comparative patterns with ancestral birth origin records

and geographic information to uncover recent demo-

graphic and migration trends. By comprehensively

analyzing these data to learn about recent migration

events, we gain deeper insights into ancestral origins

than in many existing studies, especially into Latin Amer-

ica. We also provide early insights into Asian Americans

often ignored in genetic studies of the US, including South

Asians, East Asians, andMiddle Easterners.We also identify

detailed patterns among European and African American

populations, recapitulating some similar trends reported

previously. Taken together, we use accessible individual-

level genetic and birth record data to provide insights

into the ancestral origins and complex population his-

tories in the US.
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Material and Methods

Human Subjects
The Genographic Project and Geno 2.0 Project received full

approval from the Social and Behavioral Sciences Institutional Re-

view Board (IRB) at the University of Pennsylvania Office of Regu-

latory Affairs on April 12, 2005. The IRB operates in compliance

with applicable laws, regulations, and ethical standards necessary

for research involving human participants. All DNA samples

included in this study came from customers of the National

Geographic Genographic Project, who have consented to have

their results used in scientific research. To participate in the Geno-

graphic Project, participants would first order a DNA Ancestry Kit

through the Genographic Project website. To ensure anonymity,

each DNA Ancestry Kit is encoded with a randomly generated,

nonsequential, Genographic Participant ID number. Prior to

providing a sample, participants must read an IRB-approved con-

sent form and provide written consent. Participants would then

give a saliva sample, mix the saliva sample with a stabilization

buffer solution, and return it along with their completed consent

form via postal mail. DNA is then extracted from the saliva sample

and genome-wide genotyping was performed (Genotyping and

Quality Control). Once participants obtain their results, they can

voluntarily provide an additional separate consent on the Geno-

graphic Project website to make their genotype data anonymously

available for qualified anthropological and genetic research.

In addition to providing a DNA sample, participants also pro-

vided geographic location (postal code) data and, optionally, fam-

ily history information in the form of ancestral birth origin and

ethnicity (up to grandparental level). All data of individuals who

consented to research were deidentified prior to its inclusion in

the Genographic research database. We limited our study to those

individuals who provided valid geographic locations in the United

States. Approximately 75% of individuals selected provided com-

plete pedigrees and family history data (see Supplemental Material

and Methods for further detail).
Genotyping and Quality Control
Participants of the Genographic project were genotyped with the

GenoChip array,30 an Illumina iSelect HD custom genotyping

bead array with approximately 150,000 markers that are Ancestry

InformativeMarkers. It excludesmarkers that aremedically related

to protect the health privacy of participants and minimize the

improper translation of direct-to-customer genetic ancestry results

to clinical care.31 The ability of the Genochip array to discern sub-

populations was validated by producing concordant ancestry pat-

terns with samples from the 1000 Genomes Project and demon-

strating similar FST distributions and higher mean FST values

when compared to the Affymetrix Axiom Human Origins array

(used in HGDP-CEPH) and the Illumina Human660W-Quad Bead-

Chip.30 Raw genotype data were quality controlled (QC) using

PLINK v1.90b3.39.32 We filtered to keep samples with% 0.1 miss-

ingness, sites with ¼ 0.0 missingness, and MAF R 0.05. A total of

32,589 individuals and 108,003 SNPs passed quality control.
Ancestry Reference Panels
We leveraged a variety of reference populations to help better infer

and interpret the genetic ancestry, admixture proportions, and

population structure in the Genographic cohort. Data from the

1000 Genomes Project was used to help identify genetic ancestry

and estimate admixture proportions.1 108,003 SNPs were shared
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between the Genographic samples and the 1000 Genomes Project

samples. We also used data from the Population Reference Sample

(POPRES) to help understand the population structure of individ-

uals with European ancestry in the Genographic cohort.33 All

analysis with the POPRES data was limited to the 46,710 SNPs

that are shared between the two datasets. We also leveraged

recently released sequence data for the Human Genome Diversity

Project (HGDP) to expand the available set of ancestral popula-

tions fromAsia.34 All analyses using the HGDP data was performed

using the 105,944 SNPs shared between the samples in Geno-

graphic Project and HGDP.

Principal Component Analysis
We performed principal component analysis (PCA) on the quality-

controlled samples using FlashPCA v.2.0.35 For PCA of all Geno-

graphic Project individuals, we used the genotypes of all 2,504

individuals from the 1000 Genomes Project as reference samples.

We first computed PCs across the 108,003 shared sites for 1000 Ge-

nomes Project individuals. We then projected the Genographic

Project individuals on the same principal component space using

the flag: --project.

For PCA analyses of East Asian and South Asian populations, we

used samples from 1000 Genomes Project that correspond to the

East Asian and South Asian super populations. Similar to above,

we first compute PCs for the 1000 Genomes Project samples sepa-

rately for East Asians and South Asians. We then projected East

Asian and South Asian Genographic Project individuals onto the

respective principal component space using: --project.

Continental Ancestry Assignment
We assigned continental ancestry to each Genographic sample by

using a random forest classifier. Using the PCs and known super

population assignments (AFR, African; EUR, European; EAS, East

Asian; AMR, admixed American; and SAS, South Asian) from the

1000GenomesProject samples as trainingdata,we applied the clas-

sifier to assign ancestry to each Genographic sample at 90% proba-

bility. We considered unassigned ancestries as ‘‘other’’ (OTH).

Comparison of Continental Ancestry Assignment with

Self-Reported Data
To evaluate the concordance between continental ancestry assign-

ments based on genetics and self-reported ethnicity, we standard-

ized self-reported ancestral ethnicities and estimated the propor-

tion of assigned individuals within each continental ancestry

groups that have at least one grandparent with a matching conti-

nental ancestry. Since ancestral ethnicity data were provided in

the form of free text and was therefore not standardized across par-

ticipants, we manually cleaned and mapped the reported ethnic-

ities to continent level ancestries. For example, African ancestry

can include a country (e.g., Jamaican, Nigerian, Cape Verdean),

an ethnic group (e.g., Amhara or Tigray from Ethiopia), a historical

term used to describe African descendants in America (e.g., Melun-

geon, Maroon, Mulatto), or the commonly used terms of African

American or Black.

Genetic Ancestry Proportion Estimation
We estimated admixture proportions using ADMIXTURE by first

analyzing samples from the 1000 Genomes Project in unsuper-

vised mode to learn allele frequencies.36 Then, we projected the

learned allele frequencies onto the Genographic samples to obtain

the admixture proportions using the flag: -P. We ran ADMIXTURE
The Ameri
with K ¼ 2–9 and chose K ¼ 5 as the most stable representation

based on cross-validation.

For the analysis of East Asian and South Asian,we combined sam-

ples fromHGDP and 1000 Genomes Project together to buildmore

comprehensive reference panels. Specifically, we combined 1000

Genomes Project populations under the East Asian (EAS) super pop-

ulation label with HGDP samples that have the East Asian and Oce-

ania region label, and we combined 1000Genomes Project samples

under the South Asian super population label with Central South

Asia labeled populations in HGDP. Similar to above, we first ran

ADMIXTURE on the ancestral reference panels for East Asians and

South Asians, separately. We then projected the learned allele fre-

quencies onto the Genographic samples to obtain admixture pro-

portions using the flag: -P. We tested a variety of clusters, K ¼ 2–9,

and chose K ¼ 4 for East Asians and K ¼ 3 for South Asians as the

most stable representations.
UMAP
We applied the Uniform Manifold Approximation and Projection

(UMAP) method to visualize subcontinental structure.37,38 We first

combined the PCs of the Genographic samples and the 1000 Ge-

nomes Project samples into one dataset. We then applied UMAP

on the first 20 PCs from the joint dataset to produce a two-dimen-

sionalplot.Wetestedvariousparameterchoices forUMAPandfound

that the default nearest neighbor value of 15 and the minimumdis-

tance values of 0.5 delivered the clearest result. Coloring of UMAP

plots are described in the Supplemental Material and Methods.

We further examined the subcontinental structure of Geno-

graphic Project individuals who were classified as European

ancestry individuals with data from the Population Reference

Sample (POPRES).33 Similar to the analyses with the 1000 Ge-

nomes Project data, we performed dimensionality reduction

with PCA and UMAP, keeping the same parameter values. Color-

ing of POPRES data was grouped by continental regions: Southeast

Europeans ¼ Croatia, Yugoslavia, Bosnia-Herzegovina, Serbia,

Romania, Hungary, Albania, Macedonia; Central Europe ¼
Switzerland, France, Germany, Germany, Swiss-Italian, Belgium,

Swiss-French, Netherlands, Swiss-German; British Isle ¼ Scotland,

Ireland, United Kingdom; South Europe ¼ Italy, Cyprus, Turkey,

Greece; Iberian¼ Portugal, Spain; Eastern Europe¼ Austria, Czech

Republic, Poland, Russia; Scandinavia ¼ Sweden, Norway.
Phasing and Haplotype Estimation
Genographic genotypes were phased with the Sanger Imputation

Service using EAGLE239 and the Haplotype Reference Consortium

reference panel.40 No genotype imputation was performed.
fineSTRUCTURE Analysis
For classified East Asian individuals and South Asian individuals,

we inferred clusters of unrelated individuals with shared ancestries

by applying the fineSTRUCTURE framework v.4.0.1, a model-

based approach to estimate patterns of haplotype similarity

and identify clusters of discrete populations.29 We performed

fineSTRUCTURE analysis separately for the two populations. The

first part of the fineSTRUCTURE framework uses ChromoPainter

to measure shared ancestry between individuals and estimate a

coancestry matrix. This matrix is then used in fineSTRUCTURE’s

clustering and tree-building algorithm to hierarchically cluster in-

dividuals from fine levels of structuring to broader levels. We first

applied ChromoPainter to phased genotypes to estimate the num-

ber of contiguous segments (chunks) shared and total amount of
can Journal of Human Genetics 106, 371–388, March 5, 2020 373



genome (in cM) shared between each pair of individuals within

each population, as well as the normalization parameter (c). Using

the coancestry matrix and normalized parameter, we then ran the

fineSTRUCTURE with 2 million Markov Chain Monte Carlo

(MCMC) iterations, of which 1 million are ‘‘burn-in’’ iterations,

and every 2,000 iterations was sampled. Finally, we used

fineSTRUCTURE to infer a hierarchical tree using 100,000 hill-

climbing moves. We used the scripts accompanying the

fineSTRUCTURE software as well as the ape package in R to visu-

alize the coancestry matrix and dendrogram results.

To examine the properties of the inferred clusters, we sought to

examine structure at both the broad-scale and fine-scale. There is

no definitively correct level of the dendrogram to pick for exami-

nation. We examined clades at various levels of the tree and as-

sessed broad structure at the levels in which clades had sufficient

number of individuals (on average 50 or more samples). We

further used a combination of PCA and analysis of ancestral ori-

gins to assess and define these clades. Some of the clusters are

small but genetically distinct as evident by the branch length

and height of the split (i.e., Girmitiyas, Bangladesh), and there-

fore, they were kept as separate clades.

Unlike traditional PCA, PCA using the coancestry matrix (i.e.,

chunk counts matrix) can better discern fine-scale population

structure and provide greater interpretability.29 We performed

PCA on the chunk counts matrix using in the Python library sci-

kit-learn. Individual markers are colored and labeled based on their

respective grouping.
Estimating Effective Migration Surfaces
We estimated migration and diversity relative to geographic dis-

tance using the estimating effective migration surfaces (EEMS)

method for Genographic Project individuals that were classified

under African, European, and admixed American ancestries.41

We excluded East Asian and South Asian ancestries due to low

sample size and density. We used unrelated individuals with avail-

able postal code data. We first computed pairwise genetic dissimi-

larities with the EEMS bed2diffs tool and then ran EEMS with

runeems_snps, setting the number of demes to 250 and to 500.

Per the recommendation in the manual, we adjusted the variance

for all proposed distributions of diversity, migration, and degree-

of-freedom parameters such that all were accepted 10%–40% of

the time. We increased the number of Markov chain Monte Carlo

(MCMC) iterations until it converged.

To evaluate the robustness of EEMS to sampling bias, we simu-

lated three different sampling schemes. We used individuals clas-

sified with African ancestry as it is the smallest of the three ances-

tries and therefore more likely to be impacted by sampling bias. In

the first sampling scheme, we randomly subsampled individuals

to 80% of the original sample size. In the second scheme, we

used the US Census Regions assignments for states and explored

the impact of even sampling across the four major Census Re-

gions. We subsampled African Americans so that each Census

Region was represented in equal proportions. In the last sampling

scheme, we explored the scenario of overrepresentation in the

South by subsampling at 80% but this time with half of the sub-

samples being from the South and the remaining samples are

evenly distributed across the three regions.
Haplotype Calling and Network Construction
We used IBDSeq v.r1206 to generate shared identity-by-descent

(IBD) segments from genotype data for all unrelated individ-
374 The American Journal of Human Genetics 106, 371–388, March
uals.42 Unlike other IBD detection algorithms, IBDseq does not

rely on phased genotype data and is less susceptible to switch er-

rors in phasing that can cause erroneous haplotype breaks. We fil-

ter for IBD segments greater than 3 cM.We removed segments that

overlapped with long chromosomal regions (1 Mb) that had no

SNPs across all unrelated individuals. These sites can result in false

positives IBD sharing and likely correspond to centromeres and

telomeres. We calculate the cumulative IBD sharing between indi-

viduals by summing the length of all shared IBD segments. We

then constructed a haplotype network of unrelated individuals

by defining vertices an individuals and edge weights between

vertices as the cumulative IBD sharing between individuals.

We filtered for edges with cumulative IBD sharing is R12 cM

and %72 cM, as previously described.8
Detection of IBD Clusters
While fineSTRUCTURE can identify population structure in ad-

mixed cohorts using haplotype similarity,28 fineSTRUCTURE does

not scale to large sample sizes and is not recommended for samples

>10,000.29 We therefore sought to identify clusters of related indi-

viduals in thehaplotypenetworkusing the LouvainMethod imple-

mented in the igraphpackage forR.TheLouvainMethod is a greedy

iterative algorithm that assigns vertices of a graph into clusters to

optimize modularity (a measure of the density of edges within a

community to edges between communities).43 The Louvain

Method begins by first assigning each node as its own community

and then adds node i to a neighbor community j. It then calculates

the change inmodularity and places i in the community thatmax-

imizes modularity. The algorithm repeats this continuously and

terminates when no vertices can be reassigned.

We partitioned the haplotype network into clusters by recur-

sively applying the Louvain Method within subcommunities. At

the highest level, we take the full, unpartitioned haplotype graph

and identify a set of subcommunities. We isolate the vertices

within each subcommunity, keeping only the edges between

those vertices to create separate new networks. We then apply

the Louvain Method to the new subgraphs. We repeat this process

up to four levels. We combined subcommunities with low genetic

divergence based on FST values of < 0.0001.
Annotation of IBD Clusters
We used a combination of ancestral birth origins and self-reported

ethnicities to discern demographic characteristics of each cluster.

For each cluster, we quantified the proportion of each birth origin

(i.e., country of origin) among all four grandparents, treating each

grandparent’s origin equality. We use these proportions to inform

population labels. Clusters in which a single non-US birth origin

was in high proportions was labeled with that country. In cases

where multiple non-US birth locations exists in approximately

equally high proportions, we assigned a label representing the

broader region (e.g., Eastern Europeans for Poland, Lithuania,

Ukraine, and Slovakia; East Asia for Japan, China). For certain clus-

ters, annotations could not be easily discerned by birth origin data.

In these cases, we relied on self-reported ethnicities to label the clus-

ters as these populationswere found to be less associatedwith anon-

UScountry (e.g.,Ashkenazi Jews)or thepopulationhas resided in the

US for generations (e.g., African Americans, Acadians).
Runs of Homozygosity
We used PLINK v.1.90b3.39 to infer runs of homozygosity with a

window of 25 SNPs.32 By default, PLINK reports only the runs of
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homozygosity with lengthsR1 Mb. For each individual, we calcu-

lated the sum of runs of homozygosity (sROH) by summing the

lengths of homozygous segments. We compared ROH segments

inferred by PLINK with homozygosity-by-descent (HBD) segments

inferred using IBDSeq. The two approaches largely agreed in ROH

lengths (Spearman correlation ¼ 0.94; p ¼ 7.243 10�12), with the

exception that the median sROH lengths for the Greece-Italy and

Italy clusters were lower in IBDSeq while the median sROH length

for East Asians were higher in IBDSeq when compared to PLINK

(Table S1).
Local Ancestry Inference
We inferred local ancestry with RFMix v.1.5.4 for Genographic

samples in clusters that were annotated as Hispanics/Latinos and

African Americans.44 We used samples of African (LWK, MSL,

GWD, YRI, ESN, ACB, and ASW; n ¼ 661), European (CEU, GBR,

FIN, IBS, and TSI; n ¼ 503), and Native American (MXL, PUR,

CLM, and PEL; n ¼ 347) ancestry from the 1000 Genomes Project

to build the reference panel for classifying genomic segments. We

ran RFMix with the default minimum window size (0.2 centimor-

gans, cM) and a node size of 5 with the flags: -w 0.2, -n 5. We then

collapsed the output of RFMix, which denotes the classified

ancestry of each SNP for each individual, into local ancestry seg-

ments/tracts (in cM) for each individual. We then derived global

ancestry proportions for each individual using that individual’s

local ancestry tracts; we summed the length of local ancestry tracts

for each ancestry (EUR, AFR, AMR) dividing by the total length of

the genome to get the global proportion of each ancestry. Global

ancestry proportions were visualized using the python-ternary

package in Python (see Web Resources).
Genetic Divergence
We computed weighted Weir-Cockerham FST estimates for each

pair of haplotype clusters using PLINK v.1.90b3.39.32 Using the

distance matrix of FST values between clusters, we constructed an

unrooted phylogenetic tree using the neighbor joining method

implemented in scikit-bio (see Web Resources). We visualized the

tree using Interactive Tree of Life (see Web Resources).
Effective Population Size
We estimated effective population size with IBDNe.45,46 Using the

inferred IBD segments between individuals for each cluster, we ran

IBDNe in default mode separately for each cluster to infer the

effective population size over time along with confidence

intervals.
Results

Genetic Ancestry and Diversity across the United States

To assess the diversity of ancestries among individuals in

the Genographic Project, we first performed principal

component analysis, projecting Genographic samples

into the same principal component (PC) space as that of

the 1000 Genomes Project samples (Figures 1A–1C, S1,

and S2).35,36 Since self-reported ancestry was not consis-

tently provided across all Genographic Project individuals,

we leveraged the 1000 Genomes Project data to assign con-

tinental ancestry to each Genographic sample (Material

and Methods). We first trained a Random Forest classifier
The Ameri
on the first 10 PCs of the 1000 Genomes Project samples

with super population groupings as ancestry labels (EUR,

European; AMR, Admixed American; AFR, African; EAS,

East Asian; SAS, South Asian). We then used the trained

model to assigned continental ancestry to each individual

in the Genographic cohort at > 90% confidence. A total of

3,028 individuals (9.3% of total) did not meet the classifi-

cation threshold (Table S2). The inability to classify these

individuals may be due to variable levels of admixture

not reflected in the 1000 Genomes reference populations.

No particular bias was found in the ancestral birth origin

records for these individuals, as the top non-US origins

are Germany (3.0%), Italy (2.6%), Poland (2.5%), UK

(2.5%), andMexico (2.0%). Overall, the assigned continen-

tal ancestry was largely consistent with the self-reported

ancestral ethnicity, as 95% of classified African-ancestry

individuals and 85% of classified Hispanic-ancestry indi-

viduals who reported ancestral data had at least one grand-

parent of that ancestry (Material and Methods).

Regional differences in genetic ancestry correspond to

historical demographic trends. We evaluated the distribu-

tions of classified individuals across the four designated

US Census regions: South, Northeast, Midwest, and West

(Table S2). Classified individuals of European descent

make up the majority (78.5%) of the Genographic cohort

and are the most prevalent in the Midwest (82.8% of indi-

viduals in the Midwest; p < 0.01, Fisher’s exact test; Table

S2). Admixed American ancestry individuals are most

prominent in the West and South (9.7% and 7.8% of total

individuals in the West and South, respectively; p < 0.05,

Fisher’s exact test). Individuals classified as having African

ancestry are most common in the South (3.2%), followed

by the Northeast (3.0%). East Asians mostly reside in the

West (2.1%), while South Asians are most abundant in

the Northeast (1.0%). While the proportion of individuals

classified as of European descent in the Genographic

cohort (78.5%) are similar to the proportions of individuals

reported as ‘‘White’’ in the US Census Data (76.1%; Table

S3), we note that genetic ancestry is not a direct measure

of ethnicity and race, and the two are not fully comparable

(Supplemental Material and Methods). The large propor-

tion of unclassified individuals also hinders our ability to

properly compare the Genographic cohort to the US

Census and understand how representative the Geno-

graphic cohort is of the US population. Overall, the distri-

bution of Genographic Project participants by state reflects

the US population distribution reported in the Census

(Spearman’s r¼ 0.91, p¼ 1.53 10�20; Figure S3). However,

the states of Washington, California, Virginia, Maryland,

and Colorado have higher proportions (>1% difference)

of participants when compared to the US population distri-

bution while Texas and Ohio have lower proportions of

participants (Table S4). For certain ancestries, some ascer-

tainment bias exists. For example, individuals with African

ancestry are overrepresented in California but are absent in

Idaho, Maine, Nebraska, North Dakota, South Dakota, and

Wyoming.
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Figure 1. Genetic Diversity of the US
Population
(A) Principal Components Analysis (PCA)
of individuals in the United States and in
the 1000Genomes Project. Each individual
is represented by a single dot. Individuals
in this study (NG) are colored in gray while
1000 Genomes Project individuals are
colored by super population (EUR, red;
AFR, yellow; AMR, green; EAS, blue; SAS,
purple). Principal components (PC) 1 and
PC 2 are shown.
(B) Similar to (A), except principal compo-
nents (PC) 3 and PC 4 are shown.
(C) ADMIXTURE analysis at K ¼ 5 of indi-
viduals in this study. Each individual was
assigned a continent-level ancestry label
using a random forest model trained on
the super population labels and the first
10 PCs of the 1000 Genomes Project
dataset. OTH, individuals who did not
meet the 90% confidence threshold for
classification.
(D and E) UMAP projection of the first 20
PCs. Each dot represents one individual.
In (D), individuals in the 1000 Ge-
nomes Project are colored by population
while US individuals from the National
Geographic Genographic Project are in
gray. In (E), 1000 Genomes Project individ-
uals are colored in gray while US individ-
uals from the National Geographic
Genographic Project are colored based
on their admixture proportions from
ADMIXTURE. The color for each dot was
calculated as a linear combination of each
individual’s admixture proportion and
the RGB values for the colors assigned to
each continental ancestry (EUR, red; AFR,
yellow; NAM, green; EAS, blue; SAS, pur-
ple). See Material and Methods for specific
population labels.
To uncover population substructure, we performed

dimensionality reduction with UniformManifold Approx-

imation and Projection (UMAP) on the first 20 PCs of a

combined Genographic and 1000 Genomes Project

dataset.37,38 By leveraging multiple PCs at once, UMAP

can disentangle subcontinental structure (Figures 1D, 1E,

S4, and S5). Similar to a previous analysis,38 populations

in the 1000 Genomes Project form distinct clusters

corresponding to ancestry and geography. The Geno-

graphic Project individuals project into several clusters,

overlapping with the 1000 Genomes Project clusters.

Consistent with the PCA and ADMIXTURE analysis, the

largest clusters correspond to European ancestry and

cluster closely with the 1000 Genomes CEU and GBR pop-

ulations (CEU ¼ Utah Residents with Northern and West-

ern European Ancestry, GBR ¼ British in England and

Scotland).

While UMAP is a visualization tool with no direct

interpretation of genetic distance, the continuum of
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points connecting UMAP clusters reflects the varying de-

grees of estimated admixture between different conti-

nental ancestries. In particular, the complex population

structure of Hispanics/Latinos is shown by the points

spanning between the clusters of European, Native

American, and African ancestry. Coloring of these points

based on ancestry proportions affirms the relationship

between the degree of admixture and their relative

position between reference clusters. Interestingly,

African American individuals from both datasets form a

single continuum from the European cluster to the

Yoruba (YRI) and Esan (ESN) populations of Nigeria in

the 1000 Genomes Project, indicative of the West

African origins of most African Americans. This observa-

tion is consistent with and further expands the

previous finding that the African tracts in the ad-

mixed 1000 Genomes Project populations of ACB and

ASW are similar to the Nigerian YRI and ESN

populations.2,47
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Figure 2. Population Structure of East Asian and South Asian Individuals in the US
(A and B) fineSTRUCTURE dendrogram showing the hierarchical relationship between clusters inferred using the genotypes of classified
East Asian individuals (A) and South Asian individuals (B). Branch colors represent clades with shared ancestral origins. The admixture
proportion of each individual is displayed as a bar plot in the corresponding position below the dendrogram. The number of ancestral
populations, K, is four for East Asians (A) and three for South Asians (B).
(C and D) Principal component analysis (PCA) of the fineSTRUCTURE co-ancestry matrix. Each individual (point) corresponds to a
Genographic Project individual classified as either East Asian (C) or South Asian (D). The color of each point corresponds to a clade
in the fineSTRUCTURE dendrogram shown in (A) and (B).
Fine-Scale Structure among US Individuals of Asian

Ancestry

Existing genetic studies of the US population have largely

overlooked East Asian and South Asian populations, likely

due to their underrepresentation in datasets. We therefore

explored the population structure of Genographic Project

individuals classified as East Asians and South Asians. We

used fineSTRUCTURE to first estimate patterns of haplo-

type similarities between individuals, taking into consider-

ation linkage disequilibrium, and then hierarchically clus-

tered individuals based on these patterns of shared

ancestry to identify clusters of populations and their rela-

tionships.29 We applied fineSTRUCTURE to unrelated

individuals in each population and inferred a total of 40

East Asian clusters (Figure 2A) and 26 South Asian clusters

(Figure 2B). These clusters further organized into clades

on the tree to reveal broader genetic structure. To

visualize these structures, we performed PCA on the

fineSTRUCTURE coancestry matrix. Compared to tradi-

tional PCA, distinctions between groups of individuals

were clearer with fineSTRUCTURE PCA, particularly at

the broader levels of genetic differentiation (Figures 2C

and S6A; Figures 2D and S7A; Material and Methods). We

also estimated subcontinental admixture proportions

with ADMIXTURE using the East Asian and South Asian
The Ameri
populations in the 1000 Genomes Project and the Human

Genome Diversity Project (HGDP) as reference popula-

tions (Figures S6B, S6C, S7B, and S7C). Finally, we lever-

aged data from individuals who provided grandparental

birth origin to help annotate and interpret the clusters

and clades.

The patterns of shared ancestry among these US individ-

uals capture the genetic diversity of East Asia and South

Asia. The East Asian clusters broadly organize into six ma-

jor clades, reflecting the different countries of ancestral

origin (Figure 2A). At the highest level of genetic differen-

tiation (top level of the hierarchical tree), individuals from

Southeast Asia separate from East Asians. This Southeast

Asian clade is predominantly represented by Filipinos

with a branch of individuals with more Oceanic origins

(shown in gray and yellow, respectively). Admixture pro-

portions vary among the Southeast Asian individuals,

likely due to the large number of ethnolinguistic groups

that are found in the Philippines and neighboring islands.

The East Asian clade further separates into individuals of

Chinese descent (light blue and dark blue) and those

from Japan (dark red) and Korea (light red). While the

two Chinese-related groups share a branch on the tree,

Taiwanese ancestral origins are more prevalent in one of

the groups (dark blue), the ‘‘China (þ Taiwan)’’ group,
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Figure 3. Effective Migration Rates of African Americans, His-
panics/Latinos, and Europeans within the United States.
Migration rates inferred with EEMS for African Americans (A), His-
panics/Latinos (B), and Europeans (C). EEMS models the relation-
ship between genetics and geography by assessing the decay of
genetic similarity with respect to geographic distance. Colors
and values correspond to inferred rates, m, relative to the overall
migration rate across the country. Shades of blue indicate higher
migration (i.e., log(m) ¼ 1 represents effective migration that is
10-fold faster than the average) and higher levels of genetic simi-
larity while shades of orange indicate migration barriers and lower
levels of genetic similarity.
while the other group (light blue), labeled ‘‘Southern

China,’’ also contains some individuals from Laos and

Vietnam. Lower levels of hierarchy did not differentiate

these ancestral origins into separate groups. PCA and

ADMIXTURE analysis for these two groups show that the

China (þ Taiwan) cluster resembles the Han Chinese

(CHB) population in the 1000 Genomes Project while

the Southern China group resembles the Southern Han

Chinese (CHS) population (Figure S6). Among the South

Asian individuals, we observed genetic differentiation be-

tween individuals with ancestral origins from India, re-

flecting the diverse population structure previously

observed in India.1,48 Of the three clades with majority In-

dian ancestral origin, ancestral origins from Pakistan was

observed in the ‘‘India (þ Pakistan)’’ clade, while Sri Lan-
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kan ancestral origins were present in the ‘‘India (þ Sri

Lanka)’’ clade. Individuals in these two clades resemble

the Punjabi from Lahore, Pakistan (PJL) and Sri Lankan

Tamil (STU) populations in the 1000 Genomes Project,

respectively (Figure S7). Similarly, we also find a clade of in-

dividuals with Bangladesh ancestral origins that is similar

to the 1000 Genomes Project Bengali from Bangladesh

(BEB). Interestingly, we also inferred a small, but geneti-

cally distinct ‘‘Girmitiyas’’ clade (N ¼ 12; blue branch in

Figure 2B). While the small sample size makes it difficult

to accurately assess this clade, we note that many former

British colonies (e.g., Trinidad and Tobago, Fiji, Barbados,

Guyana) are represented in the ancestral origins of these

individuals. We therefore hypothesize that these individ-

uals may potentially be descendants of Girmitiyas, inden-

tured Indian laborers brought to those former colonies.49

Population Differentiation andMigration Rate Inference

across the United States

Understanding the relationship between genetics and ge-

ography can provide insights into demographic history.

Previous analyses of this relationship in the US population

have primarily compared data aggregated at the state or

regional level.7,9 Such approaches, however, do not cap-

ture the fine-scale patterns of genetic similarity that are

not influenced by discrete political boundaries. We there-

fore sought to infer population structure across continuous

space with the estimating effective migration surfaces

(EEMS) method.41 EEMS statistically measures effective

migration rates by overlaying a dense grid of evenly spaced

demes and calculating genetic differentiation (i.e., resis-

tance distance) between neighboring demes. Higher rates

of migration are inferred in locations where genetic simi-

larity is high (colored in blue in Figure 3) while lower rates

of migration are inferred in locations where genetic simi-

larity is low (colored in dark orange). Areas with low effec-

tive migration are also referred to in EEMS as ‘‘barriers,’’

which can be intuitively interpreted as regions in which

neighboring populations are more genetically dissimilar

than expected. In more homogeneous populations, these

barriers tend to indicate isolation by distance, while in

more heterogenous populations, they may reflect differ-

ences in population structure. We applied EEMS to

genetically classified Europeans, African Americans, and

Hispanic/Latinos across the contiguous 48 states. We

excluded East Asians and South Asians due to low sample

density.

The inferredmigration rates for African Americans reveal

genetic signatures of historical demographic events (Fig-

ures 3A, S8, and S9). Along the Atlantic coast from the

Florida Panhandle to southern Maine, genetic similarity

and effective migration rates are relatively high, indicating

the constant migration and similar effective population

sizes of African Americans in these states. However,

we also observe a strong north-south barrier to migra-

tion starting along the Appalachian Mountain Range,

continuing north up the Mississippi River, and extending
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Table 1. Summary of Haplotype Clusters

Cluster
Samples
(Count)

Median
Sum of
ROH (Mb)

Median
Cumulative
IBD (cM)

Northwest Europe 1 11,725 2.88 15.23

Northwest Europe 2 1,571 2.80 15.15

Ireland 2,137 2.85 15.42

Central Europe 3,116 2.83 15.06

Eastern Europe 2,471 3.16 15.37

Southern Europe 1,626 2.73 14.98

Italy 697 6.91 14.64

Greece-Italy 238 7.28 15.02

Scandinavia 717 3.02 15.54

Finland 314 3.67 17.50

Acadia 249 3.89 19.48

French Canadian 314 2.89 16.60

Ashkenazi Jewish 1,475 11.26 31.75

Admixed Jewish 445 2.75 15.50

Hispanics/Latinos 810 3.53 16.38

Hispanics/Latinos in
California

573 4.10 17.11

Hispanics/Latinos in
New Mexico

163 5.52 21.92

Hispanics/Latinos in Texas 177 6.27 23.65

Puerto Rico 350 8.01 26.23

African Americans South 761 3.34 19.56

African Americans North 420 2.94 15.90

East Asia 561 3.65 19.63

Southeast Asia 325 8.44 17.90

South Asia 389 10.42 14.82

Greater Middle East 93 9.01 17.16

Sum of runs of homozygosity (sROH) was calculated by summing the lengths
of continuous homozygous segments R1 Mb. Cumulative IBD was deter-
mined by summing IBD segments of R3 cM and filtering for only pairs
R12 cM and %72 cM. Statistics were determined within haplotype clusters,
rather than across the ancestrally heterogeneous and imbalanced full network.
west across the rest of the country. This migration barrier,

along with the migration barrier spanning Texas and New

Mexico, reveals a pattern of genetic relatedness across ge-

ography that is consistent with the Great Migration from

the 1910s to the 1960s in which an estimated 6 million

African Americans migrated out of the South to cities

across the Northeast, Midwest, and West.7,50 To under-

stand whether this migration barrier is influenced by sam-

pling bias, we subsampled individuals and simulated three

different sampling schemes (Material and Methods). We

found that the north-south migration barrier was consis-

tently present in all three sampling schemes, confirming

that the inferred migration results of EEMS are robust to

irregular sampling (Figure S10).41
The Ameri
A highly complex pattern of genetic similarity exists

among present-day Hispanics/Latinos across the country,

capturing regional genetic structure. Across the south-

western states, two regions bordering Mexico—one in Cal-

ifornia and another extending from New Mexico to

Texas—exhibit high levels of genetic similarity and effec-

tive migration rates (Figures 3B, S8, and S9). Separated by

a migration barrier in Arizona, these two distinct regions

likely reflect known differences in the northward migra-

tion from east versus west Mexico.8,51 High genetic similar-

ity and relative rates of effective migration are also

observed in Florida and continue northward. However,

barriers to migration are observed in states immediately

east of the Mississippi River, likely resulting from varying

degrees of admixture.

The patterns of genetic similarity for Europeans capture

subcontinental structure. With the exception of the states

in theMidwest and along the Atlantic coast, elevated levels

of genetic similarity and relative migration rates are

observed across most of the country. We find low effective

migration rates surrounding Minnesota and Michigan,

likely due to the genetic dissimilarity of Finnish and Scan-

dinavian ancestry that is abundant in the region (Figures

3C, S8, and S9).8 We also find reduced migration rates

across Ohio,West Virginia, and Virginia, suggesting the ex-

istence of genetic differentiation along the Appalachian

Mountains. Many of the major cities, such as Washington,

DC, Philadelphia, andMiami, also exhibit low genetic sim-

ilarity, perhaps due to greater genetic diversity and admix-

ture within cities.

Coupling Fine-Scale Haplotype Clusters and

Multigenerational Birth Records Uncovers Distinct

Subcontinental Structure

To disentangle more recent and subtle population struc-

ture, we performed identity-by-descent (IBD) clustering

on the Genographic cohort and annotated clusters using

multigenerational self-reported birth origin data. We first

built an IBD network from pairwise IBD sharing among

31,783 unrelated individuals, where vertices represent in-

dividuals and edges represent the cumulative IBD (in cen-

timorgans, cM) between pairs of individuals. We employed

the Louvain method, a greedy heuristic algorithm, to

recursively partition vertices in the graph into clusters

that maximize modularity for each iteration.8,43 The clus-

ters of individuals resulting from each iteration can be in-

terpreted as having greater amounts of cumulative IBD

shared between individuals within the cluster than with

those outside of the cluster. To aid in the interpretation

of the clusters, we merged clusters with low genetic differ-

entiation (FST < 0.0001), resulting in a final set of 25 clus-

ters (Table 1).We annotated each cluster based on ancestral

birth origin and ethnicity data and constructed a neighbor-

joining tree based on the FST values (Figure S11). 98% of

the 3,028 individuals that were not classified by our

Random Forest model were assigned to a haplotype cluster.

No single cluster was overrepresented by unclassified
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Figure 4. Geographical Distribution of Hispanic/Latino Haplotype Clusters
(A) Each dot corresponds to a county containing present-day individuals and the size of the dot signifies the number of samples of the
particular cluster in that county. Only the Hispanic/Latino cluster with the highest odds ratio is shown for each county, and for clarity,
only the top ten locations with the highest odds ratio are shown for each cluster. Maps showing the full distribution for each haplotype
cluster can be found in the supplement (Figure S15).
(B) Ancestral birth origin proportions of each cluster for individuals with complete pedigree annotations, up to grandparent level. Pro-
portions were calculated from aggregating the birth locations of all grandparents corresponding to members of each haplotype cluster.
For each chart, only the top five birth origins are shown as individual proportions; the remaining birth origins are aggregated into one
slice (lightest color).
(C) Ternary plots of ancestry proportions based on local ancestry inference for each haplotype cluster. Each dot represents one
individual.
individuals, as unclassified individuals comprised of 8%–

11% of each cluster.

Genetic and geographic differences are greatest among

Hispanic/Latino haplotype clusters. We identified a total

of five Hispanic-related clusters (Figure 4). The largest of

these cluster (n¼ 810; orange in Figure 4A) is strongly asso-

ciated with south Florida (OR ¼ 10.4; p ¼ 2.5 3 10�25; Ta-

ble S5) but is also found in California and Texas (ORR 2; p

< 0.05; Table S5). No single ancestral birthplace character-

izes this cluster, as the US, Mexico, and Cuba eachmake up

more than 10% of the birth origin labels (Figure 4B). Pro-

portions of European ancestry tracts inferred with
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RFMix44 are higher in this cluster (mean ¼ 72.7%, SD ¼
20.4%; Figure 4C) than in the other Hispanic/Latino clus-

ters (mean¼ 48.0%–67.4%; Figure 4C). Puerto Ricans char-

acterize a substantial proportion of another Hispanic/

Latino cluster associated with Florida (OR > 4) as well as

New York City (OR> 5). Unlike the other Hispanic clusters,

the Puerto Rican cluster shares the same branch on the FST
tree as the African American clusters (Figure S11), likely

due to relatively high proportions of African ancestry

(mean¼ 11.2%, SD¼ 9.0%) among Puerto Ricans. Median

lengths of sROH and cumulative IBD in Puerto Ricans are

also the highest among the Hispanic clusters (8.01 Mb
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and 26.23 cM, respectively; Table 1). Consistent with other

studies,45,52 we found evidence of a strong bottleneck

in Puerto Ricans approximately 9–14 generations ago

(Figure S12), coinciding with the colonization of America

and likely explaining the elevated levels of IBD and sROH.

Three distinct clusters of Hispanics/Latinos were found

in the Southwest (Figure 4A): one strongly associated

with New Mexico (OR > 4; p < 0.05), another primarily

in Texas (OR > 3; p < 0.05), and the third associated

with Southern California (OR > 2; p < 0.05). Combined

with the EEMS analysis, these clusters confirm our observa-

tion of parallel migration routes from east and west Mexico

into Southwestern United States. While genetic differenti-

ation between these three clusters are subtle (FST ¼ 0.001–

0.003), comparison of the ancestral birth origin patterns

and local ancestry proportions of these clusters reveal

meaningful differences in their population history.

Whereas the majority of Hispanics/Latinos in NewMexico

report US ancestral origins, the recent ancestors of His-

panics/Latinos in Texas are predominantly from Mexico.

Nonetheless, these two clusters share similar local ancestry

proportions with only slight genetic dissimilarity that

result in amoderate decrease inmigration rate (from darker

blue to light blue in Figure 3B). Unlike the Hispanic/Latino

clusters associated with New Mexico and Texas, the His-

panics/Latinos in California cluster contain greater propor-

tions of ancestors from Central and South America (e.g.,

Colombia and El Salvador). Proportions of Native Amer-

ican ancestry (Figure 4C) and effective population size

(Figure S12) are also higher in this cluster, but median cu-

mulative IBD and sROH length are shorter (Table 1),

similar to Central/South Americans found in New York

City.52 Taken together, these two differences further

explain the presence of themigration barrier in Arizona be-

tween Hispanic/Latino individuals in California and those

in New Mexico.

Historical immigration of Europeans into the US

occurred in successive waves, with northern and western

Europeans making up one wave from the 1840s to 1880s

and another wave comprised of southern and eastern Euro-

peans occurring from the 1880s to 1910s.53 Consistent

with this immigration pattern, haplotype clusters with an-

cestries from northwest and central Europe have higher

proportions of US ancestral birth origins than haplotype

clusters from southern and eastern Europe, suggesting

earlier immigration (Figures 5A and 5B). The two clusters

with the highest proportion (>75%) of US ancestral birth

origin (‘‘Northwest Europe 1’’ and ‘‘Northwest Europe 2’’)

have �4.5% of UK ancestral origins. The central European

cluster and the Irish cluster both have 66.1% and 68.5% of

US ancestral origins, respectively (Figure 5B). In contrast,

the US makes up only 62.2% and 34.5% of ancestral birth

origin for the clusters of southern Europeans and eastern

Europeans, respectively.

Unlike the larger European clusters, the smaller Euro-

pean clusters reflect the structure of recent immigrants

and genetically isolated populations, recapitulating earlier
The Ameri
findings.8 The geographic distributions of these subpopu-

lations are more concentrated, and their ancestral birth

origin proportions are overrepresented by specific coun-

tries and ethnicities (Figures 6A and 6B). Specifically, Finns

and Scandinavians are abundant in the Upper Midwest

and Washington; French Canadians are found in the

Northeast; Acadians are present in the Northeast and Loui-

siana; and Italians, Greeks, and Jews are mostly located in

the metropolitan area of New York City (Figure 6A). Of the

European clusters, median cumulative IBD sharing and

sROH lengths are highest among Ashkenazi Jews

(31.8 cM and 11.3 Mb, respectively; Table 1), reflective of

past founding events and endogamy.21,54 The two Jew-

ish-related clusters were identified using self-reported

ancestral ethnicity data rather than birth origin data, since

Jewish ancestry is not specific to any single location. Jew-

ish ancestry, particularly Ashkenazi Jewish ancestry, is

more consistently reported on both sides of the family in

the larger cluster, while individuals in the smaller cluster

more commonly reported Jewish ancestry on only one

side of the family, suggesting the presence of admixture

with non-Jewish ancestries. Therefore, the larger cluster is

labeled ‘‘Ashkenazi Jewish’’ and the smaller cluster is

labeled ‘‘Admixed Jewish.’’

We inferred two haplotype clusters of African Americans

separated along a north-south cline, recapitulating the

EEMS migration barrier inference. One cluster is primarily

distributed among the northern and western states (‘‘Afri-

can Americans North’’), while the other is distributed

among the states southeast of the Appalachian Mountains

(‘‘African Americans South’’) (Figure S13). The proportion

of US birth origin is higher in the northern cluster than

the southern cluster, providing further evidence of isola-

tion-by-distance among African Americans in the north.7

These two clusters share similar sROH lengths but differ in

admixture proportions and median IBD sharing (Table 1),

pointing to a cluster with consistent African American an-

cestors and a cluster with more admixed ancestors. Median

cumulative IBD sharing is higher among African Americans

in the south (median cumulative IBD ¼ 19.6 cM, median

sROH ¼ 3.3 Mb) than in the north (median ¼ 15.9 cM;

Table 1), resulting in different patterns of effective popula-

tion size over antecedent generations (Figure S12),45,46

while the average proportion of African ancestry is higher

in the northern cluster than the southern cluster.

Four of the clusters reflect recent immigrants from Asia

(Figure S14),whichgrew rapidly in themid-20th century af-

ter the elimination of national origin quotas.55 The recency

of immigration among these clusters is supported by the

observation that fewer than 30% of grandparents were

born in theUS.Geographically, individuals in these clusters

primarily reside in major cities. East Asians predominantly

inhabit the metropolitan areas of the west and northeast

(OR > 2), Southeast Asians are enriched in the west (OR >

2.5), and South Asians are strongly associated with the

northeast (OR > 2.5). Despite its small size, the cluster of

GreaterMiddle East individuals reflectsmany of the known
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Figure 5. Geographical Distribution of European American Haplotype Clusters
(A) Each dot represents a county containing present-day individuals. The size of the dot represents the number of individuals of the
particular cluster in that county. For each cluster, the top 20 locations with the highest odds ratio are shown. Maps showing the full
distribution for each cluster can be found in the supplement (Figure S16).
(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete pedigree annotations, up to grandparent
level, are included. For each chart, only the top five birth origins are shown as individual proportions; the remaining birth origins are
aggregated into one slice (lightest color).
demographic patterns of Arab Americans, as individuals in

this cluster are primarily of Lebanese origin and are distrib-

uted in the northeast as well asmetropolitan Detroit. sROH

lengths are particularly long for South Asians (median

sROH ¼ 10.3 cM; Table 1), Southeast Asians (median

sROH ¼ 7.8 cM), and Middle Easterners (median sROH ¼
8.2 cM), potentially reflecting patterns of consanguinity

and inbreeding in their ancestral regions.56 In particular,

themedian sROH length in the South Asia cluster is the sec-

ond highest among all clusters, but the median cumulative

IBD length is similar to most clusters (Table 1). The popula-

tion of South Asia is large and diverse, with many endoga-

mous groups making up the 1.5 billion people living in

the region.57,58 The pattern of IBD and sROH among indi-

viduals in South Asian cluster thus may reflect the result

of recent consanguinity in a large population.48,59
Discussion

As the US population is becoming increasingly diverse,

genomic studies are simultaneously growing in scale
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and relevance; to increase scientific and ethical parity,

these studies must move beyond the current practice of

evaluating genetically homogeneous groups in isola-

tion.47,60 Here, we provide an integrative framework for

analyzing population structure in ancestrally heteroge-

neous individuals. Our comprehensive approach has al-

lowed us to capture spatial patterns of gene flow within

and between subpopulations that are difficult to infer

from a single method alone. For example, while EEMS

enabled us to examine genetic similarity at a finer scale

than previous studies and identify genetic differentiation

within a state, EEMS can only compare neighboring

demes and does not directly evaluate the genetic similar-

ity of geographically distant individuals. Haplotype clus-

tering, on the other hand, can identify population

structures over long distances, but it does not measure

genetic similarity with respect to geography. Since

individuals are exclusively assigned to a single cluster,

information regarding admixture, especially between

neighboring clusters, are lost during haplotype clus-

tering. An integrative approach can thus enable greater

insights into populations with complex histories, as
5, 2020



Figure 6. Geographical Distribution of Genetically Differentiated European American Haplotype Clusters
(A) Similar to Figure 5A but corresponding to European populations that are more genetically isolated. For clarity, the top ten locations
with the highest odds ratio are shown for each cluster. Full distributions for each cluster can be found in the supplement (Figure S17).
(B) Ancestral birth origin proportions for each cluster in (A). Only individuals with complete pedigree annotations, up to grandparent
level, are shown. For each chart, only the top five birth origins are shown as individual proportions; the remaining birth origins are aggre-
gated into one slice (lightest color).
well as populations typically overlooked in previous

studies such as Asian Americans.

The genetic structure and history of Hispanic/Latino

populations is particularly complex due to many historical

migration and admixture events.4,9 This complexity is re-

flected in the variable migration rates across the country

and the large variations in admixture proportions within

and between subpopulations. While prior analysis of His-

panics/Latinos in the US found differences in ancestry pro-

portions aggregated at the state level,9 we demonstrate that

considerable differences in genetic ancestry also exist

within a state. For example, two distinct clusters—Puerto

Rico and Hispanics/Latinos—are found in Florida, with

the Puerto Rico cluster having higher average African

ancestry proportions than the Hispanics/Latinos cluster

(9.0% versus 2.5%, respectively). EEMS also enabled direct

measures of genetic similarity within states and between

subpopulations. While the mean ancestry proportions

are similar between the New Mexican cluster and the

Texan cluster, individuals in northern New Mexico are

more genetically differentiated than individuals in south-

ern New Mexico, as indicated by the migration barrier.

The individuals in northern New Mexico are likely Nuevo-
The Ameri
mexicanos, descendants of Spanish colonial settlers, while

those in the south are more genetically similar to

Hispanic/Latino individuals in central Texas, likely

because they share a common ancestral origin (i.e.,

Mexico). We also built upon the use of pedigree annota-

tion8 by quantifying ancestral origins to better understand

the differences in genetic ancestry between subpopula-

tions. For example, in the Hispanics/Latinos in California

cluster, the mean proportion of European ancestry is

smaller when compared to the New Mexican and Texan

clusters, reflecting the lower proportion of US ancestral

origins. Comparison of sROH and IBD lengths of these

clusters further reveal evidence of founder effects. Puerto

Ricans, Hispanics/Latinos in Texas, and Hispanics/Latinos

in New Mexico had the highest median IBD lengths and

showed evidence of recent bottleneck (Figure S12), consis-

tent with prior studies.45,52 In general, median sROH and

IBD lengths were higher in Hispanic-related clusters than

European clusters, reflecting the patterns found in refer-

ence populations56,61 and in line with recent findings in

New York City.52

The demographic history of African Americans is

characterized by large-scale migration and admixture,
can Journal of Human Genetics 106, 371–388, March 5, 2020 383



primarily due to the transatlantic slave trade and racial

segregation.50,62 The patterns of genetic ancestry and relat-

edness between states and regions of the US reflect these

events.3,7,9 Our results show, at a finer scale, the barriers

to migration and gene flow, particularly along the Appala-

chian Mountains. This migration barrier overlaps with the

boundary between slave states and free states, as well as the

boundary between states that enacted laws enforcing racial

segregation and states that forbade segregation. The north-

south separation of two African American clusters further

emphasize this divide. The African Americans South clus-

ter contains more recent ancestors from outside the US,

particularly from the Caribbean, than the African Ameri-

cans North cluster. These insights further emphasize the

impact of historical migration and socioeconomic divide

on the present-day patterns of genetic relatedness among

African Americans.

Despite accounting for more than 5% of the US popula-

tion, individuals with Asian ancestries are underrepre-

sented in US population genetics studies, hindering the

ability of prior studies to investigate of their ancestry.8

Our analyses of these individuals therefore provide new in-

sights into their genetic structure. Many of these individ-

uals are descendants of recent immigrants, as indicated

by the high proportions of non-US grandparental ancestral

origin; therefore, they likely reflect the population of their

ancestral region. The genetic structure of these individuals

is particularly diverse. Using fineSTRUCTURE, genetic dif-

ferentiation was found between East Asian and South

Asian individuals of different ancestral origin as well as be-

tween individuals with the same ancestral origin. At the

same time, longer sROH was observed in the Southeast

Asia, South Asia, and Greater Middle East haplotype clus-

ters, likely reflecting consanguinity or endogamy patterns

in their ancestral countries. For example, the long sROH

in South Asians may reflect endogamy related to the

caste system in India, while similar patterns among the

Middle Eastern and Southeast Asian clusters may be

capturing consanguineous marriage practices in those

regions.48,63,64 Understanding population genetic struc-

ture and patterns of homozygosity are important in

determining the genetic profile of diseases within

subpopulations, especially since these recent immigrants

are becoming less similar to those in their ancestral coun-

tries due to outbreeding, admixture, and population

growth.65,66 As populations mix, heterozygosity increases

and allele frequencies change. This, in turn, can alter the

prevalence of certain diseases, particularly rare recessive

disorders that are often more prevalent in populations

with increased homozygosity.67 At the same time, changes

in allele frequencies can also reduce the accuracy of genetic

predictors of complex traits (i.e., polygenic risk scores),

especially if the prediction model was built using a homo-

geneous cohort of individuals from a divergent ancestry.60

Population history in the US is best characterized among

individuals of European descent. Genetic diversity tends to

be highest in more densely populated regions, likely due to
384 The American Journal of Human Genetics 106, 371–388, March
multiple populations living in the same place. Many of the

European subpopulations we identified are similar to those

previously found—e.g., French Canadians, Acadians, Scan-

dinavians, and Ashkenazi Jews.8 The geographic distribu-

tion of these subpopulations, particularly those that are

more genetically diverged, overlap in the metropolitan

areas of the Northeast, Midwest, and California. These

overlaps may explain the presence of certain EEMS-in-

ferred migration barriers. For example, the migration

barrier and lower genetic similarity encompassing metro-

politan New York City may be explained in part by the

large presence of Greeks, Italians, and Ashkenazi Jews in

that area.

The precision of population labels assigned to clusters of

individuals is a function of demographic complexity and

sample size. For example, Finnish ancestry is clearly Euro-

pean but genetically distinct from several other European

populations due to historical bottlenecks, making this

ancestry cluster relatively easily separable. By contrast,

most Americans of European descent have heterogeneous

ancestors from several northwestern European countries

who have admixed over time, resulting in relatively evenly

distributed ancestry overlapping that of present-day Euro-

peans from multiple primarily northwestern countries.

Additionally, while we identify and describe some substan-

tial structure among Hispanic/Latino populations, consid-

erably more is likely to exist and remains to be learned

from larger and more diverse future studies. Similarly,

sub-regional resolution into the ancestry of recent Asian

immigrants has been relatively limited in population ge-

netics studies, and the structure of this immigration will

be learned from larger future studies. Interestingly, we

found that fineSTRUCTURE was able to disentangle Asian

subpopulations at a finer resolution than haplotype clus-

tering, demonstrating the tradeoff between resolution

and scale of these two methods and further highlighting

the value of an integrated approach. The accuracy of self-

reported birth records and variable granularity of geopolit-

ical boundaries also provide additional considerations

regarding the precision of population labels.

In addition to being of anthropological interest, under-

standing fine-scale human history and its role in shaping

genetic variation is also important for interpreting the ge-

netic basis of biomedical traits. The emergence of biobank-

scale genomic data is enabling the imputation of pedigree

structure regardless of whether some relatives have

contributed DNA,68 greater insights into the impact of

fine-scale population structure on genetic associations

with disease,14,17,27,60,69 and population-based screening

for individuals with serious genetic and health-related as-

sociations.70 Standard practice in genetic studies to date

has involved identifying the largest genetically homoge-

neous population in a study (typically European ancestry)

and conducting genetic analysis excluding other popula-

tions.71,72 However, as genetic studies become increasingly

promising for clinical translation, this practice has led

to concerns about genetic tools exacerbating health
5, 2020



disparities, particularly for populations underrepresented

in genetic studies.47,60 Participation in genetic programs

is increasing in the US, for example with the All of Us

Research Program (Web Resources) or with direct-to-con-

sumer genetic tests that an estimated 26 million people

have taken, and many of these participants are of diverse

non-European ancestry.73,74 As a result, the need for

including more diverse populations in genetic studies

and for inferring more granular demographic histories in

diverse study cohorts is becoming greater. Understanding

such structure is important to account for stratification

in association studies, prevent the overgeneralization of

potentially confounded results, and avoid exacerbating

existing Eurocentric study biases.60,71,75,76 This study

demonstrates how genetic data can be coupled with

geographic and birth origin data to reconstruct such demo-

graphic histories, particularly in a large and heterogeneous

population.
Data and Code Availability

Genotype data and associated metadata are available to re-
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