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Figure S17: Luhya het/homder ratio by effect category 
 

 
 
Figure S17: Luhya (LWK) Het/Hom Ratio by effect catgory: Under a recessive model, it is 
expected that EXTREME effect variants will have an excess of heterozygotes, compared to 
homozygotes, because of the effect of purifying selection on homozygotes. However, this pattern 
could also be biased by an excess of low frequency variants with extreme effect, compared to 
other categories. In order to distinguish between the two processes, we removed singletons for 
the dataset and calculated the ratio of heterozygotes / homozygotes in the 1000G LWK for all 
variants within each effect, and plotted the results according to the variants frequency. Results 
show an excess of heterozygotes in variants of extreme effect for low frequency bins (≤ 30%), 
being particularly evident for variants between 10% derived allele frequency. The inset shows 
boxplots for the 10% allele frequency bin along the x-axis. 
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Figure S18: Testing a recessive model 
 

 
 
Figure S18: Testing a recessive model. A) A non-additive model of dominance could lead to 
deviations from HW equilibrium if the derived variant selection coefficient is strong enough. We 
compared the observed genotype frequencies with the expected frequencies, considering the 
observed allele frequencies. Variants are plotted according to the observed number of 
homozygotes (x-axis) and heterozygotes (y-axis) in the LWK population. Heat map reflect a 
higher number of variants. The grey dashed line reflects the HW expectation. Colors are shaded 
when variants significantly deviate from HW expectation (p-value < 0.01). Specifically, variants on 
the upper left corner represent an excess of heterozygotes compared to what would be expected, 
compatible with a recessive model. B) Weighted average proportion of variants grouped by effect 
in recessive (green) vs. dominant (blue) genes. LARGE effect variants are found, on average, at 
lower proportions in OMIM annotated dominant genes, compared to OMIM recessive genes, 
consistent with purifying selection acting more efficiently in dominant genes, where the LARGE 
effect variants is more likely to be expressed. 
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Figure S19: Mutational load in 1000 Genomes exome 
data 
 
 

 
 
 
Figure S19: Differences in Load - 1000 Genomes Dataset. For each population, load is 
calculated under a recessive, intermediate and dominant model (as in Figure 4), reflecting 
contributions from variants with moderate, large and extreme effect. 
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Figure S20: Distribution of highly differentiated variants 
vs. the genome 
 
 

 
 
 
Figure S20: Distribution of functional alleles in highly differentiated variants vs. the whole 
Genome. A) Distribution of GERP scores across the Genome B) Distribution of GERP scores in 
highly differentiated variants for different demographically relevant population comparisons: (Afr- 
Afr), (Afr-OoA), (OoA,OoA). Results show now apparent differences in the distribution of 
functional variants in those two datasets.  
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Figure S21: Schematic of the range expansion model 
 

 
 

 
Figure S21: Schematic of the range expansion model. The model includes a spatial 
bottleneck we used to simulate the evolution of heterozygosity during a linear 2D expansion. 
Panel A) shows the ancestral population (gray) separated from the empty habitat by a migration 
barrier (black line). After a burn-in phase of 20,000 generations, a single deme in the middle of 
the migration barrier is removed for 5 generations, during which individuals from the ancestral 
population can migrate into the empty habitat. Panel B) shows the onset of the expansion and 
panel C) the colonization of the empty habitat by the expanding population (gray). Panel D shows 
the whole metapopulation after the colonization is complete. Migration is bidirectional among 
demes in the simulation. For a similar simulation model, see (21). 
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Figure S22: Sharing of GERP ≥ 6 variants across 
populations  

 
 
 
Figure S22: Sharing of GERP >6 Variants Across Populations. A) For the 800 extreme 
variants we sorted alleles into homozygote and heterozygote states. Variants are sorted along the 
X-axis according to their global frequency in the dataset, with common variants on the left and 
rare variants on the right. In each population, the counts of heterozygotes are ordered in 
decreasing frequency from top to bottom. Homozygotes are ordered in the opposite fashion, with 
frequent counts on the bottom row and increasing toward the top within each population. The 
majority of variants are singletons, indicated to the right of grey line. Out of Africa populations 
carry more EXTREME variants at higher frequencies and share more EXTREME variants with 
each other than they share with African populations. Only a small number of GERP >6 variants 
are fixed in African populations. B) A version of the homozygous GERP>6 variants is shown in 
the bottom panel.  
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Figure S23: Site frequency spectrum under different 
selection regimes and locations of the range expansion. 
 

 
 
 
 
Figure S23: Site frequency spectrum under different selection regimes and locations of the 
range expansion. The site frequency spectrum was plotted for simulated demes from different 
locations under a range expansion model. Each row represents a different simulated selection 
coefficient, corresponding to A) moderate B) large C) extreme estimated effect. As the negative 
selection coefficient increases, the proportion of low frequency variants increases, and as 
geographic distance between the deme and the ancestral population increases, a greater amount 
of variants reaches fixation, even for highly deleterious variants.   
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Figure S24: Testing significance in observed differences 
in load under the assumed models of dominance. 
 

 
 
Figure S24: Testing significance in observed differences in Load under the assumed 
models of dominance. A) Under each model, 1,000 iterations were performed where individuals 
were randomly re-assigned to populations and the maximum difference in mutation load was 
calculated. The observe difference in load is represented by a red square and the simulated 
differences are represented via boxplots. Under all three models the observed difference in Load 
is statistically significant with a p-value < 0.05 (See SI Methods). B) Distribution of the simulated 
differences in mutation load (blue) and the observed difference in load (red square). 
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Figure S25: Relationship between runs of homozygosity 
and mutation load 

 
 
Figure S25: Median cumulative runs of homozygosity (cROH) for HGDP populations. The 
median number of cumulative runs of homozygosity was calculated for each of our seven 
populations from >600,000 SNPs obtained from SNP array data (2). Each ROH was at least 1 
megabase (Mb) and contained a minimum of 25 SNPs. We allowed for 1 missing genotype per 
window and 2 heterozygotes per Mb in order to account for genotyping error rates. ROHs were 
calculated in plink. Long runs of homozygosity represent segments shared IBD between an 
individual’s parents and represent inbreeding in the population. While strong genetic drift in 
Native Americans results in long ROH, endogamy in the San has also resulted in a substantial 
fraction of the genome in ROH (22) and shared IBD among members of the group (23).  
  

S
an

M
bu
ti

M
oz
ab
ite

P
at
ha
n

C
am
bo
di
an

Y
ak
ut

M
ay
a

cR
O

H
 (M

b)

0

20

40

60

80



	
   40	
  

Figure	
  S26:	
  Annotation	
  of	
  variants	
  with	
  PhyloP	
  and	
  correlation	
  
with	
  distance	
  from	
  Africa	
  
 
a) 
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b) 

 
 
Figure S26: Number of derived homozygous sites per individual and derived deleterious 
alleles per individual for different PhyloP categories. A) The PhyloP categories are chosen 
such that the probability of a site to be neutral is >0.05 (black, Neutral), 0.05 < p < 0.01 (green, 
Moderate), 0.01<p<0.001 (blue, Large) and p < 0.001 (red, Extreme). B) The PhyloP categories 
are chosen such that the probability of a site to be neutral is >0.05 (black, Neutral), 0.05 < p < 
0.01 (green, Moderate), 0.01<p<0.001 (blue, Large) and p < 0.001 (red, Extreme).   
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