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clinical translation.
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SUMMARY
Polygenic risk scores (PRS) measure genetic disease susceptibility by combining risk effects across the
genome. For coronary artery disease (CAD), type 2 diabetes (T2D), and breast and prostate cancer, we per-
formed cross-ancestry evaluation of genome-wide PRSs in six biobanks in Europe, the United States, and
Asia. We studied transferability of these highly polygenic, genome-wide PRSs across global ancestries,
within European populations with different health-care systems, and local population substructures in a
population isolate. All four PRSs had similar accuracy across European and Asian populations, with poorer
transferability in the smaller group of individuals of African ancestry. The PRSs had highly similar effect sizes
in different populations of European ancestry, and in early- and late-settlement regions with different recent
population bottlenecks in Finland. Comparing genome-wide PRSs to PRSs containing a smaller number of
variants, the highly polygenic, genome-wide PRSs generally displayed higher effect sizes and better trans-
ferability across global ancestries. Our findings indicate that in the populations investigated, the current
genome-wide polygenic scores for common diseases have potential for clinical utility within different
health-care settings for individuals of European ancestry, but that the utility in individuals of African ancestry
is currently much lower.
Cell Genomics 2, 100118, April 13, 2022 ª 2022 The Author(s). 1
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INTRODUCTION

Polygenic risk scores (PRSs) capture an individual’s genetic sus-

ceptibility to diseases by summarizing the estimated polygenic

effects across the genome. PRSs have shown great promise

for improving detection of high-risk individuals in many common

complex diseases, such as cardiometabolic diseases and com-

mon cancers.1–4 However, these studies have been heavily

biased toward individuals of European ancestry and have pro-

vided limited understanding about the transferability of the

PRSs across ancestries. This currently limits the potential clinical

utility of the PRS and may lead to exacerbation of health dispar-

ities in implementation of the PRSs across different societies and

health-care systems.5

We evaluated the variability of the PRS risk estimates across

multiple populations and ancestry groups in four common com-

plex diseases that have shown promise beyond routinely used

clinical risk scores: coronary artery disease (CAD), type 2 dia-

betes (T2D), breast cancer, and prostate cancer.2,6–10 We com-

bined genome-wide genotype data with disease endpoints for

four ancestry groups across six biobanks covering onemillion in-

dividuals. We calculated genome-wide PRSs, obtaining input

weights from genome-wide association studies (GWASs) pub-

lished and made available by large disease genetics consor-

tia.11–14 These consortia GWASs and corresponding linkage

disequilibrium (LD) reference panels consisted primarily of indi-

viduals of European ancestry, and they provided weights for ge-

netic variants used for generating the PRS. This reflects the cur-

rent reality where most PRSs are developed and tested in

individuals of European ancestry. To extensively assess the

impact of Eurocentric study biases on PRS portability, we per-

formed a cross-ancestry evaluation of our genome-wide PRSs

of on three levels: across global ancestries, across European

populations, and locally within Finland, a European country

with a well-known population substructure.15

RESULTS

The descriptive statistics for the six biobank studies are shown in

Table 1. These include BioBank Japan (n = 178,726), Estonian

Biobank (n = 110,597), FinnGen (n = 258,402), The Trøndelag

Health Study (HUNT, n = 69,422), Mass General Brigham

(MGB) Biobank (n = 27,231), and UK Biobank (n = 358,922).

The represented ancestries are European, South Asian, East

Asian, and African ancestry. The total number of cases was

88,830 for CAD, 110,685 for T2D, 32,922 for breast cancer,

and 26,700 for prostate cancer, and the mean age ranged from

43.4 years in Estonian Biobank to 63.1 in BioBank Japan. The

proportion of women ranged from 46.3% in BioBank Japan to

67.3% in Estonian Biobank.

For each disease, our main PRSs were calculated with LDpred

(>6 million variants in each PRS; Table S1), using weights from

the largest published GWASs that do not contain data from the

UK Biobank.11–14 The PRSs were rescaled in each dataset and

for each ancestry subset, to havemean 0 and standard deviation

(SD) at 1. We then assessed the transferability of PRSs by

comparing the odds ratio (OR) estimates between biobanks

and ancestry groups on three levels of variation in ancestry: (1)



A

B

C

Figure 1. Effect sizes of polygenic risk scores (PRSs) across ancestries

(A) The results across ancestry groups, with ‘‘European’’ representing a pooled OR of effect sizes from (B).

(B) The results across different populations with European ancestry.

(C) The results across early- and late-settlement regions in Finland (FinnGen).

(legend continued on next page)
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across global ancestries, (2) across populations with European

ancestry but with varying health-care systems, and (3) across

subpopulations in Finland, a country with a nationwide uniform

health-care system and a well-known early- and late-settlement

division in population structure, with previous evidence of PRS

stratification.16

Figure 1A shows the ORs per SD increase in PRS across the

three ancestry groups: European, South and East Asian, and Af-

rican ancestries. The OR estimates ranged from 1.10 to 1.53 for

CAD, from 1.24 to 1.66 for T2D, from 0.90 to 1.49 for breast can-

cer, and from 1.35 to 2.21 for prostate cancer (Table S2). For all

four diseases, the effect sizes were lowest in individuals of Afri-

can ancestry and highest in individuals of European ancestry,

followed by individuals of South and East Asian ancestry with

similar or slightly lower effect sizes. In breast cancer, we did

not detect an association for women of African ancestry (OR

1.12, 95% CI 0.93–1.35 in UK Biobank, OR 0.90, 0.69–1.35 in

MGBBiobank), but looking at the effects across different LDpred

parameters for fraction of causal variants in UK Biobank (Fig-

ure S1), the PRS would be associated with OR 1.40 (1.13–1.72)

in individuals of African ancestry, had the fraction been chosen

based on individuals of African ancestry, instead of individuals

of European ancestry. In other diseases, the choice of the frac-

tion had only a fairly small effect.

Figure 1B compares the effect sizes across different popula-

tions with European ancestry. Overall, the variation between es-

timates was much smaller in European ancestry samples,

ranging from 1.35 to 1.64 for CAD, from 1.46 to 1.78 for T2D,

from 1.45 to 1.50 for breast cancer, and from 1.66 to 1.96 for

prostate cancer. For CAD and T2D, the estimates were highest

in the UK Biobank and lowest in MGB Biobank. Breast cancer

estimates were highly similar across all biobanks, and prostate

cancer estimates were highest in Finns.

Figure 1C shows the estimates in early- and late-settlement re-

gions in Finland. The effect sizes were highly consistent

throughout the regions for all four diseases. The most similar ef-

fect sizes were again detected for breast cancer. The findings

were highly similar also across a more detailed set of geographic

regions (Figure S2).

Lastly, we compared in UK Biobank the LDpred PRSs to two

other types of PRSs generated primarily in individuals of Euro-

pean ancestry: (1) to previously published PRSs containing a

smaller number of variants3,10,17,18 and (2) to genome-wide

PRSs generated with PRS-CS, which restricts analyses to

HapMap3 variants (Figure 2, Table S3). The highest effect size

was observed in 2/4 diseases (European) and 3/4 diseases

(South Asian) for PRS-CS. In T2D, the effect sizes were fairly

similar across the three PRSs. In African/Caribbean ancestry,

the best-performing PRS varied by disease: in CAD, the LDpred

and PRS-CS had the highest and highly similar effects; in T2D,

LDpred had the highest effect size, but the difference between

the different PRSs was fairly small; in breast cancer, the PRS-

CS PRS had the highest effect size, with a considerable drop
ORs with 95% CIs (CI) are shown for 1 SD increase in PRS. See Table 1 for resp

obtained by random effects meta-analysis of effects shown in (B). In (C), out of

abroad, 4,304 born in regions ceded to the Soviet Union, 182 born in Åland Isla

(C) is provided in the description of FinnGen in STAR Methods. CAD = coronary

4 Cell Genomics 2, 100118, April 13, 2022
(to 27% of the effect size) with the LDpred PRS and a moderate

drop to 70% for the limited-variant PRS; in prostate cancer, the

limited-variant PRS had the highest effect size, with consider-

able effect size drops with the other PRSs.

Looking at the transferability of the different CAD PRSs across

ancestries in UK Biobank (Figure 2; Table S3), the best transfer-

ability was observed for the PRS-CS PRS (drop to 90% for South

Asian ancestry, and to 56% for African/Caribbean ancestry,

compared to European ancestry). For the T2D PRSs, the trans-

ferability between PRSs was highly similar (drops to 85%–91%

for South Asian ancestry and to 58%–65% for African/

Caribbean ancestry). For the breast cancer PRSs, the best trans-

ferability to South Asian ancestry was observed for the LDpred

PRS (drop to 95%) and for the PRS-CS PRS (drop to 83%),

with a drop to 62% for the limited-variant PRS. For the breast

cancer PRSs, the best transferability to African/Caribbean

ancestry was observed for the PRS-CS PRS (drop to 74%), fol-

lowed by the limited-variant PRS (drop to 60%). For prostate

cancer PRSs, all PRSs showed good transferability to South

Asian ancestry, but the best transferability to African/

Caribbean ancestry was observed for the limited-variant PRS.

DISCUSSION

By combining data across six biobankswith onemillion samples,

we show that in four major diseases with great public health

impact and well-developed genome-wide PRSs—CAD, T2D,

breast and prostate cancer—the scores transfer well across Eu-

ropean and, to a lesser extent, South and East Asian popula-

tions. We also show that the PRSs transfer much more poorly

to individuals of African ancestry. Within populations of Euro-

pean ancestry, we observed only small variability in risk esti-

mates. Within Finland, a country with well-documented genetic

differences between the early-settlement region in the South

and West and the late-settlement region in the East and North,

we observed essentially no variability in risk estimates.16

Several studies have looked at trans-ancestry performance of

PRSs for common diseases, but the majority of such studies

have used PRSs containing a small number of variants, consisting

of approximately tens to a few hundred genetic variants.18–29

Contemporary PRSs have focused on liberalizing variant inclusion

to build genome-wide PRSs, which typically contain hundreds of

thousands to a few million variants.30–33 But, only a few studies

have assessed transferability of such PRSs across ancestries,34–

36 with even fewer comparing these genome-wide PRSs to ones

containing a smaller number of variants.31,34,37 To our knowledge,

this is the largest study to date evaluating these genome-wide Eu-

ropean ancestry PRSs across ancestries, with additional evalua-

tion of effects across different cohorts of European ancestry, and

within a country with well-known east-west differences. Our order

of effect sizes by ancestry—largest in Europeans, followed by

South and East Asians, with generally lowest effect sizes detected

in Africans—are consistent with population history, and they are in
ective number of cases and controls. The pooled OR (‘‘European’’) in (A) was

258,402 in FinnGen, 8,117 individuals were excluded, comprising 3,157 born

nds, and 474 with missing data. Detailed information of the Finnish regions in

artery disease, T2D = type 2 diabetes.



1.0

1.5

2.0

2.5

3.0

CAD T2D

Breast c
ancer

Prosta
te ca

ncer

O
R

 p
er

 S
D

 (9
5%

 C
I)

UK Biobank, European

1.0

1.5

2.0

2.5

3.0

CAD T2D

Breast c
ancer

Prosta
te ca

ncer

O
R

 p
er

 S
D

 (9
5%

 C
I)

UK Biobank, South Asian

1.0

1.5

2.0

2.5

3.0

CAD T2D

Breast c
ancer

Prosta
te ca

ncer

O
R

 p
er

 S
D

 (9
5%

 C
I)

UK Biobank, African / Caribbean

Limited−variant PRS

LDpred

PRS−CS

Figure 2. Comparison of polygenic risk scores (PRSs) generated with different methods
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line with the previous studies using a smaller number of variants,

with further evidence from comparisons of prediction accuracy

of anthropometric traits and lipid biomarkers.5,19,22,24,26,34,38,39

The genome-wide PRSs were also compared to the PRSs

containing a smaller number of variants. In general, the

genome-wide PRSs, particularly PRSs generated with PRS-

CS, conferred the largest effect sizes. The limited-variant PRS

in prostate cancer was an exception, but it is based on a twice

as large and a diverse GWAS18 compared to the LDpred and

PRS-CS PRSs for prostate cancer,13 which may explain why it

performed best in individuals of European ancestry. Compared

to the PRSs containing a smaller number of variants, the

genome-wide PRSs showed generally better performance and

higher transferability to individuals of South Asian and African

ancestry.13,18 The main exception was African ancestry, where

the prostate cancer PRS consisting of 269 variants outper-

formed the LDpred and PRS-CS PRSs. One reason for this

may be that theGWAS underlying the 269 PRSs is highly diverse,

containing multiple cohorts of individuals of African ancestry,18

whereas in the other PRSs across the diseases, the GWAS

was primarily based on individuals of European ancestry. This

finding further highlights the need for more diversity in genetic

discovery studies and the need for research on optimizing

trans-ancestry polygenic risk prediction.

Finland has two well-known genetic subpopulations, for which

population stratification has been observed previously.16 Previ-

ous studies have shown geographical differences in allele fre-

quencies of rare high-impact variants for recessive Mendelian

diseases as well as for common diseases in Finland with well-

documented genetic differences between early- and late-settle-

ment regions.40,41 We therefore studied whether such gradients

would impact the utility of PRSs. Despite these genetic substruc-

tures, our results showed highly similar effect sizes between

early- and late-settlement regions, indicating that fine-scale

population structures and recent genetic bottlenecks did not

affect the transferability of the PRSs.

PRSs have been particularly promising for identifying individ-

uals at risk for early-onset disease and for improving accuracy
of risk estimation in individuals carryingmutations in high-impact

disease-causing genes, such as known breast cancer suscepti-

bility genes.2,6,42 There are two key steps in creating risk func-

tions for PRS: (1) calculation of weighted sums of the genetic var-

iants using effect sizes from an independent dataset and (2)

estimating the predictive accuracy and the dose response be-

tween the PRS and the disease risk. Ancestry needs to be

considered in both steps to allow for transferability of PRSs.

Large-scale GWASs widely used for drawing weights for the var-

iants are currently heavily biased toward individuals of European

ancestry. This makes them less optimal for generating PRSs for

individuals of other ancestries due to, for example, differing allele

frequencies and genetic architectures across populations, as

well as varying LD patterns.38 The PRS distribution in each

ancestry group is also dependent on these same genetic factors

and can therefore create considerable differences of the raw

PRS distributions between the ancestry groups.43 The optimal

way to adjust for these differences is to have a reference genome

that correspond to the target ancestry group. In addition, the

PRS distributions may differ due to methodological choices

used for constructing the PRS,26 and it is likely that rescaling

should be done only for similarly processed datasets, to reduce

the influence of factors such as genotype quality control and

technical artifacts.

Several measures can be undertaken to improve the utility of

PRSs across ancestries. Most importantly, we need better repre-

sentation of different ancestries in GWASs.18,44–48 Of the four

GWASs used for generating our genome-wide PRSs, the propor-

tion of individuals of other than European ancestry was highest

for CAD (23%), the majority of whom were of South or East Asian

ancestry. In breast cancer, the proportion of individuals of East

Asian ancestry was 11%, whereas the T2D and prostate cancer

GWASswere limited to individualsofEuropeanancestry. Similarly,

we need strategies to account for genetic admixture, as well

as careful alignment of the PRSs against adequate reference

sampleswith respect to ancestry and, when relevant, with respect

to relevant subpopulations.46,49–51 Several tools are currently

being developed for improved trans-ancestry polygenic risk
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prediction,52,53 and the transferability could also be improved by

leveraging information about functional annotations.54

Limitations of the study
This study should be interpreted in light of certain limitations.

Despite the large number of individuals studied, the sample size

in South Asian or African ancestries remained fairly small, partic-

ularly for analyses on breast and prostate cancer. While our com-

parisons show relatively small differences between cohorts with

European ancestry, it may be that the risk estimates vary consid-

erably between individuals due to, for example, admixed

ancestry, and the role of admixture in this variability warrants

further research. Differences in predictive performance and

dose response can reflect truedifferences in genetic architecture,

but the results can be affected by multiple other population and

reference sample-related factors, such as age and sex distribu-

tion, disease definitions, sample ascertainment, as well as varia-

tion in environmental risk factors.55 This study involved biobanks

with hospital-based ascertainment (BioBank Japan, MGB Bio-

bank) and population-based ascertainment (Estonian Biobank,

HUNT, UK Biobank), as well as a mixture of the two (FinnGen).

Phenotyping differences between datasets existed, ranging

from single ICD-based records to high-quality cancer and medi-

cation reimbursement registries. Despite the differences across

countries, health systems, and biobank characteristics, we

observed good transferability of all PRSs across similar popula-

tions. Our observations may help in defining the population and

ancestry-specific reference samples for PRS calculation in the

four diseases studied. Moreover, differences in risk between an-

cestries may arise from a range of factors, including socioeco-

nomic and health-care system-related factors and differing levels

of traditional disease risk factors.56–58 They may also reflect

differing impacts of clinical risk factors: for instance, weight gain

is considered particularly detrimental for risk of T2D in Asians.59

In conclusion, we observed good transferability of largely Eu-

ropean ancestry-derived, genome-wide PRSs for CAD, T2D,

breast and prostate cancer across biobanks of European and

Asian ancestry, but not for individuals of African ancestry. The

highly polygenic, genome-wide PRSs generally displayed better

transferability across ancestries than PRSs containing a smaller

number of variants. This large-scale study further emphasizes

the pressing need for diversity in genetic studies and the need

for population and ancestry-based reference samples. Without

prioritizing diversity in PRS evaluations and translation efforts,

widely adopting PRSs to clinical caremay exacerbate health dis-

parities, and efforts to overcome the lack of diversity have great

potential to improve health outcomes across ancestries.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The FinnGen data may be accessed through Finnish

Biobanks’ FinBB portal

- http://www.finnbb.fi

GWAS genotype data of BioBank Japan are available

at the National Bioscience Database Center Human

Database

Nagai et al., 2017 Research ID: hum0014; https://humandbs.

biosciencedbc.jp/en/hum0014-v21

UK Biobank data are available through a procedure

described at http://www.ukbiobank.ac.uk/

using-the-resource/

Bycroft et al., 2018 http://www.ukbiobank.ac.uk/using-the-resource/

The Trøndelag Health Study (HUNT). The HUNT data

may be accessed by application to the HUNT

Research Centre.

Krokstad et al., 2013 https://www.ntnu.edu/hunt

De-identified data of the MGB Biobank that supports

this study is available from the MGB Biobank portal.

Restrictions apply to the availability of these data,

which are available to MGB-affiliated researchers via a

formal application.

Karlson et al., 2016 https://biobank.partners.org/

Estonian Biobank. Researchers interested

in Estonian Biobank can request the access at

https://www.geenivaramu.ee/en/access-biobank

Leitsalu et al., 2015 https://www.geenivaramu.ee/en/access-biobank

PGS Catalog/LDpred polygenic risk scores This paper https://www.pgscatalog.org/

PGS002241–PGS002244

PGSCatalog/PRS-CS polygenic risk score for prostate

cancer

This paper https://www.pgscatalog.org/

PGS002240

PGS Catalog/PRS-CS polygenic risk score for breast

cancer

Mars et al., 2020 https://www.pgscatalog.org/

PGS000335

PGS Catalog/PRS-CS polygenic risk score for

coronary artery disease and type 2 diabetes

Tamlander et al., 2022 https://www.pgscatalog.org/

PGS001780, PGS001781

Software and algorithms

PRS-CS (version Sep 10, 2020) Ge et al., 2019 https://github.com/getian107/PRScs

PLINK v2.00a2.3LM Chang et al., 2015 https://www.cog-genomics.org/plink/2.0/

STEROID 0.1 - https://genomics.ut.ee/en/tools/steroid

Eagle v2.3.5 Loh P-R et al. 2016 https://alkesgroup.broadinstitute.org/Eagle/

R statistical programming v3.2.0 or later - https://www.r-project.org/

LDpred v1.0.7 Vilhjálmsson et al. 2015 https://github.com/bvilhjal/ldpred

Other

PRS-CS pipeline - https://github.com/FINNGEN/CS-PRS-pipeline

Project code This paper https://doi.org/10.5281/zenodo.6203211
RESOURCE AVAILABILITY

Lead contact
Further information and requests should be directed to the lead contact, Samuli Ripatti (samuli.ripatti@helsinki.fi).

Materials availability
This study did not generate new materials.
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Data and code availability
d The FinnGen data can be accessed through the Fingenious� services (https://site.fingenious.fi/en/) managed by FINBB.

GWAS genotype data of BioBank Japan are available at the National Bioscience Database Center Human Database (research

ID: hum0014; https://humandbs.biosciencedbc.jp/en/hum0014-v21). UK Biobank data are available through a procedure

described at http://www.ukbiobank.ac.uk/using-the-resource/.The HUNT data may be accessed by application to the

HUNT Research Centre (https://www.ntnu.edu/hunt). Researchers interested in Estonian Biobank can request the access at

https://www.geenivaramu.ee/en/access-biobank. De-identified data of the MGB Biobank that supports this study is available

from theMGBBiobank portal (https://biobank.partners.org/). Restrictions apply to the availability of these data, which are avail-

able to MGB-affiliated researchers via a formal application. Weights for the LDpred PRSs are available at PGS Catalog

(pgs-info@ebi.ac.uk) with PGS IDs PGS002241–PGS002244, and weights for the PRS-CS PRSs with PGS001780–

PGS001781,60 PGS000335,61 and PGS002240.

d Original code generated within this project has been deposited at Zenodo and is publicly available. DOIs are listed in the key

resources table.

d Any additional information is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Each of the six studies had undergone the pre-processing, imputation and quality control steps according to local pipelines. All an-

alyses were limited to adults (age R18).

BioBank Japan
BioBank Japan (BBJ) is a multi-institutional hospital-based biobank with DNA and serum samples from 12 medical institutions in

Japan and approximately 200,000 participants.62 The individuals are mainly of Japanese ancestry, and all patients have a diagnosis

of at least 1 of 47 diseases. The study participants have been followed up for their health record after an initial visit, collecting

information on disease onset and cause of death. Each participant has provided written informed consent and the BBJ project

was approved by the research ethics committees of the RIKEN Center for Integrative Medical Sciences and the Institute of Medical

Sciences at the University of Tokyo.

All disease endpoints were defined based on physician’s diagnosis. The coronary artery disease (CAD) diagnosis comprises in-

dividuals diagnosed with myocardial infarction, stable angina, or unstable angina. Age at disease onset was available for a subset

of individual: for 11,717 with CAD, for 30,475 with type 2 diabetes (T2D), for 4,962 with breast cancer and for 4,374 with prostate

cancer. The detailed definitions can be found elsewhere.63 Age at diagnosis was retrieved from medical records.

We genotyped samples with either (i) the Illumina HumanOmniExpressExome BeadChip or (ii) a combination of the Illumina

HumanOmniExpress and HumanExome BeadChips. We applied standard quality control criteria for both samples and variants as

detailed elsewhere.64We then prephased genotypes with Eagle65 and imputed dosages withMinimac3 using 1000Genomes Project

Phase 3 (version 5) data (n = 2,504) and Japanese whole-genome sequencing (WGS) data (n = 1,037) as a reference.64 The dataset

uses genome build 37 (hg19). The polygenic risk score (PRS) calculation was performed with PLINK v2.00a2LM66 using genotype

dosages.

Estonian Biobank
The Estonian Biobank is a population-based biobank of the EstonianGenomeCenter at theUniversity of Tartu (EstBB).67 The biobank

consists of Estonians (83%), Russians (14%), and other nationalities (3%). The genotypes have been linked to several national health

records, including National Health Insurance Fund, hospital databases, prescription data, infraction registries, the cancer registry,

and the Causes of Death registry. All biobank participants have signed a broad informed consent form. Analysis in the EstBB was

carried out under ethics approval 1.1-12/624 from the Estonian Committee on Bioethics and Human Research.

The disease diagnoses were defined based on ICD-10 codes (International Classification of Diseases, 10th revision) as follows: for

CAD, any of I21-I23 or Z95; for type 2 diabetes (T2D), any of E11, excluding gestational diabetes with E10; for breast cancer, any of

C50; for prostate cancer, any of C61. Age at diagnosis was defined as the time in years from birth until the date of first record for each

diagnosis.

All EstBB participants have been genotyped at the Core Genotyping Lab of the Institute of Genomics, University of Tartu, using

Illumina GSAv1.0, GSAv2.0, and GSAv2.0_EST arrays. Samples were genotyped and PLINK format files were created using Illumina

GenomeStudio v2.0.4. Individuals were excluded from the analysis if their call-rate was < 95% or if sex defined based on heterozy-

gosity of X chromosome did not match sex in phenotype data. Before imputation, variants were filtered by call-rate < 95%, HWE

p-value < 1e-4 (autosomal variants only), and minor allele frequency < 1%. Variant positions were updated to b37 (hg19) and all var-

iants were changed to be from TOP strand using GSAMD-24v1-0_20011747_A1-b37.strand.RefAlt.zip files from https://www.well.

ox.ac.uk/�wrayner/strand/ webpage. Pre-phasing was done using Eagle v2.3 software22 (number of conditioning haplotypes

Eagle2 uses when phasing each sample was set to: –Kpbwt=20000) and imputation was done using Beagle v.28Sep18.79323
e2 Cell Genomics 2, 100118, April 13, 2022

https://site.fingenious.fi/en/
https://humandbs.biosciencedbc.jp/en/hum0014-v21
http://www.ukbiobank.ac.uk/using-the-resource/
https://www.ntnu.edu/hunt
https://www.geenivaramu.ee/en/access-biobank
https://biobank.partners.org/
mailto:pgs-info@ebi.ac.uk
https://www.well.ox.ac.uk/%7Ewrayner/strand/
https://www.well.ox.ac.uk/%7Ewrayner/strand/
https://www.well.ox.ac.uk/%7Ewrayner/strand/


Short Article
ll

OPEN ACCESS
with effective population size ne=20,000. Population specific imputation reference of 2297 WGS samples was used.68 The PRS

calculation was performed with STEROID 0.1 (https://genomics.ut.ee/en/tools/steroid) using imputed genotype dosages.

FinnGen
FinnGen is a collection of prospective epidemiological and disease-based cohorts and hospital biobank samples, aiming for a collec-

tion of 500,000 genotype samples from Finnish individuals by 2023. The Data Freeze 6 consists of 258,402 adult individuals, with their

genotypes linked to national health registries, including the national hospital discharge (available from 1968), death (1969–), cancer

(1953–) andmedication reimbursement (1964–) and purchase (1995–) registries. Information on region of birth was obtained from the

Finnish Population Information System.

CADwas defined as A) any of I20–I25, I46, R96 or R98 (ICD-10), or 410–414 or 798 (ICD-9) as underlying or direct cause of death, or

B) any of I20.0, I21–I22 (ICD-10) or 410, 4110 (ICD-9) as the main diagnosis at hospital discharge, or C) coronary bypass surgery or

coronary angioplasty at hospital discharge or identified from the specific country-wide register of invasive cardiac procedures. T2D

was defined as any of E11.[0-9] (ICD-10), 250.[0-8]A (ICD-9), or use of blood-glucose lowering drugs, and by excluding individuals

with type 1 diabetes with E10.[0-9] (ICD-10), 250.[0-8]B (ICD-9) or with eligibility for special reimbursement for insulin with ICD-10

E10.[0-9]. Breast cancer cases were identified from the cancer registry with diagnosis C50 (International Classification of Diseases

for Oncology, 3rd Edition; ICD-O-3), from the death registry with C50 (ICD-10) and 174 (ICD-9), and from the drug reimbursement

registry by selecting individuals with a reimbursement code for C50 (ICD-10). Similarly, prostate cancer cases were identified

from the cancer registry with diagnosis C61 (ICD-O-3), from the death registry with C61 (ICD-10) and 185 (ICD-9), and from the reim-

bursement registry with C61 (ICD-10). Age at diagnosis was defined as the date of first record for each diagnosis.

The early- and late-settlement analyses were based on information about birthplace. Early settlement comprised the regions

Central Ostrobothnia, Ostrobothnia, South Ostrobothnia, Southwest Finland, Pirkanmaa, Uusimaa, Päijät-Häme, Satakunta,

Kanta-Häme; late settlement contained the regions Kainuu, North Karelia, North Savo and North Ostrobothnia; the borderline

area contained the regions South Savo, Central Finland, Lapland, Kymenlaakso, and South Karelia.

The samples are genotypedwith Illumina and Affymetrix arrays (Illumina Inc., San Diego, and Thermo Fisher Scientific, Santa Clara,

CA, USA). The genotypes have been imputed with using the SISu v3 population-specific reference panel developed from high-quality

data for 3,775 high-coverage (25-30x) whole-genome sequencing in Finns. The detailed genotype imputation workflow can be found

at https://dx.doi.org/10.17504/protocols.io.xbgfijw. The dataset uses genome build 38 (hg38). The PRS calculation was performed

with PLINK v2.00a2.3LM.66

Patients and control subjects in FinnGen provided informed consent for biobank research, based on the Finnish Biobank Act. Alter-

natively, older research cohorts, collected prior the start of FinnGen (in August 2017), were collected based on study-specific con-

sents and later transferred to the Finnish biobanks after approval by Valvira, the National Supervisory Authority for Welfare and

Health. Recruitment protocols followed the biobank protocols approved by Valvira. The Ethics Review Board of the Hospital District

of Helsinki and Uusimaa approved the FinnGen study protocol Nr HUS/990/2017. The FinnGen project is approved by the Finnish

Institute for Health and Welfare (THL), approval number THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, THL/341/

6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019), Digital and population data service agency VRK43431/2017-3,

VRK/6909/2018-3, the Social Insurance Institution (KELA) KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019 and Statistics

Finland TK-53-1041-17.

Following biobanks are acknowledged for collecting the FinnGen project samples: Auria Biobank (https://www.auria.fi/biopankki),

THL Biobank (https://thl.fi/fi/web/thl-biopankki), Helsinki Biobank (https://www.terveyskyla.fi/helsinginbiopankki), Biobank Borealis

of Northern Finland (https://www.oulu.fi/university/node/38474), Finnish Clinical Biobank Tampere (https://www.tays.fi/en-US/

Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland (https://ita-suomenbiopankki.fi), Cen-

tral Finland Biobank (https://www.ksshp.fi/fi-FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank (https://www.

veripalvelu.fi/verenluovutus/biopankkitoiminta) and Terveystalo Biobank (https://www.terveystalo.com/fi/Yritystietoa/

Terveystalo-Biopankki/Biopankki/). All Finnish Biobanks are members of BBMRI.fi infrastructure (www.bbmri.fi).

The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and by twelve in-

dustry partners (AbbVie Inc, AstraZeneca UK Ltd, Biogen MA Inc, Celgene Corporation, Celgene International II Sàrl, Genentech Inc,

Merck Sharp & Dohme Corp, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze

Therapeutics Inc., Janssen Biotech Inc, and Novartis AG).

HUNT
The Trøndelag Health Study (HUNT) is a large population-based cohort from the county Nord-Trøndelag in Norway. All residents in

the county, aged 20 years and older, have been invited to participate. Data was collected through three cross-sectional surveys,

HUNT1 (1984-1986), HUNT2 (1995-1997) and HUNT3 (2006-2008), and has been described in detail previously,69 with the fourth

survey recently completed (HUNT4, 2017-2019). DNA from whole blood was collected from HUNT2 and HUNT3, with genotypes

available from 71,860 participants. Participation in the HUNT Study is based on informed consent and the study has been approved

by the Data Inspectorate and the Regional Ethics Committee for Medical Research in Norway (REK: 2014/144, 2015/1205).

CADwas defined as A) any I20.0, I21, or I22 (ICD-10) or 410 or 411 (ICD-9) in the Hospital Registry, or B) any ICD-10 I21-5, I46, R96

or R98 in the Cause of Death Registry. T2D was defined as any E11 (ICD-10) in the Hospital Registry, breast cancer as any C50 in the
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Cancer Registry or the Hospital Registry, and prostate cancer as any C61 in the Cancer Registry or the Hospital Registry. Age used as

a covariate was coded as birth year. Age given in the population overview was defined in two ways; The first as estimated age at first

diagnosis occurrence. Age estimation was calculated by subtracting birthyear June 1st from date at first diagnosis occurrence. The

second was estimated age at date of death. Age estimation was calculated by subtracting birthyear June 1st from date of death.

Imputation was performed on the 69,716 samples of recent European ancestry using Minimac3 (v2.0.1, http://genome.sph.umich.

edu/wiki/Minimac3)70 with default settings (2.5 Mb reference-based chunking with 500kb windows) and a customized Haplotype

Reference consortium release 1.1 (HRC v1.1) for autosomal variants and HRC v1.1 for chromosome X variants.71 The customized

reference panel represented the merged panel of two reciprocally imputed reference panels: (1) 2,201 low-coverage whole-genome

sequences samples from the HUNT study and (2) HRC v1.1 with 1,023 HUNTWGS samples removed before merging. We excluded

imputed variants with Rsq < 0.3 resulting in over 24.9 million well-imputed variants. The dataset uses genome build 37 (hg19). The

PRS calculation was performed with PLINK v2.00a2.3LM.66

The Trøndelag Health Study (HUNT) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences,

Norwegian University of Science and Technology NTNU), Trøndelag County Council, Central Norway Regional Health Authority, and

the Norwegian Institute of Public Health. The genotype quality control and imputation has been conducted by the K. G. Jebsen center

for genetic epidemiology, Department of public health and nursing, Faculty of medicine and health sciences, Norwegian University of

Science and Technology (NTNU).

MGB biobank
The Mass General Brigham (MGB) Biobank [https://biobank.partners.org] is a hospital-based research program launched in 2010

designed to empower genomic and translational research for human health. Participants are patients above age 18 who provided

informed consent to join the biobank in the Mass General Brigham network (previously Partners HealthCare), including Massachu-

setts General Hospital, Brigham andWomen’s Hospital, and other affiliated institutions. Sample recruitment of theMGBBiobankwas

approved by the Partners Human Research Committee (PHRC) (the Institutional Review Board). PHRC provides continued ethical

and scientific oversight of the MGB activities.72 For each consented subject, a collection of blood samples is obtained (plasma,

serum, and DNA), which are then linked to their clinical data in the electronic health records (EHR) as well as survey data on lifestyle,

behavioral and environmental factors, and family history.72 To date, MGB Biobank has enrolled more than 120,000 participants and

released genotyping array data for 36,424 subjects (December 2019). MGB investigators can access the de-identified datasets from

the MGB Biobank under a Data Use Agreement (DUA) without additional study protocols.

The biobank samples are genotyped on Multi-Ethnic Global array (MEGA) from Illumina (Illumina Inc., San Diego, USA) and are

released in several batches. We performed batch-specific genotype data QC to remove SNPs with genotype missing rate >0.05,

samples with genotype missing rate >0.02, and SNPs with differential missing rate >0.01 between any two batches, after which

different batchesweremerged for subsequent QC steps. AsMGBBiobank included individuals from diverse populations, we inferred

genetic ancestry of biobank participants using 1000 Genomes samples (1KG)73 as the population reference panel. Specifically, we

computed principal components (PCs) for biobank samples and 1KG samples combined, and trained a Random Forest classifier to

assign a ‘‘super population’’ label for biobank samples with a prediction probabilityR0.9 using the first 6 PCs of the 1KG samples as

the training data. This resulted in 26,677 individuals classified as European (EUR), 1,607 as African (AFR), 1,840 as Admixed American

(AMR), 504 as East Asian (EAS) and 297 as South Asian (SAS) ancestry. Within each ancestry, we removed samples with a mis-

matched reported and genetic sex, outliers of the absolute value of heterozygosity (>5SD from the mean), and one from each pair

of related individuals (IBD >0.2); SNPs that showed significant batch associations at P < 1 3 10�4, with a missing rate > 0.02 or

HWE test P < 1 3 10�10 were also discarded. Next, we used Michigan Imputation Server (Minimac4) to impute genotype dosages

for biobank samples, with the Haplotype Reference Consortium (HRC) as the reference panel for EUR ancestry and 1KG phase3 AFR

data as the reference for AFR samples. Lastly, we removed markers with imputation quality INFO score <0.8, minor allele frequency

(MAF) <0.01, a significant deviation fromHWEwith P < 1 3 10�10, andmissing rate >0.02. The dataset uses genome build 37 (hg19).

EUR and AFR ancestries were chosen for PRS analysis in the present study based on having >50 cases available for all four dis-

eases. The disease diagnoses were the following ICD-10 diagnoses in the linked EHR data for biobank participants (with ICD-9 codes

converted to ICD-10): for CAD, any of a I20.0, I21, or I22; for T2D, any of E11.[0-9]; for breast cancer, any of C50; for prostate cancer,

any of C61. Age at disease onset was not available from the de-identified dataset. The PRS calculation was performed with PLINK2

using genotype dosages.

UK biobank
UK Biobank is a prospective cohort study comprising approximately 500,000 individuals from across the United Kingdom, aged be-

tween 40 and 69 at recruitment. The cohort contains deep phenotyping, including biological measurements, lifestyle factors, and

clinically relevant blood biomarkers. Although most individuals in the cohort are of European ancestry, over 20,000 individuals

have a self-reported ethnic background originating outside Europe. The dataset has been imputed using the merged UK10K and

1000 Genomes (phase 3) reference panels.74 Details on the cohort, as well as data generation and imputation have been previously

described.75 The dataset uses genome build 37 (hg19). The PRS calculation was performed with PLINK v2.00a2.3LM.66

We thank all participants in the UKBiobank study. This research was conducted using the UKBiobank Resource under Application

Number 22627. UK Biobank has obtained ethics approval from the North-West Multi-centre Research Ethics Committee (approval
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number: 11/NW/0382) that covers analysis of data by approved researchers. UK Biobank obtained informed consent from all

participants.

CAD was defined as A) any of I20–I25, I46, or R96 (ICD-10) as the primary or secondary cause of death (from data fields 40001 and

40002, age from data field 40007), B) any of I20.0, I21–I22 (ICD-10) or 410, 4110 (ICD-9) in the hospital inpatient records (from data

fields 41270 and 41271, age defined based on data fields 41280 and 41281), or C) any coronary revascularization procedure

(OPCS-4, variable 41272, codes K40, K41, K42, K43, K44, K45, K46, K49, K501, and K75, and age defined based on data field

41282; OPSC-3, data field 41273, code 3043, age defined based on data field 41283; self-reported operations, data field 20004, co-

des 1070 and 1095, age defined based on data field 20010).

T2D was defined as A) diabetes diagnosed by doctor (data field 2443, age from data field 2976) excluding individuals with age at

diagnosis under 18, and individuals with type 1 diabetes by ICD-10 diagnosis E10 (from data field 41270), or B) ICD-10 E11 as the

primary or secondary cause of death (from data fields 40001 and 40002, age from data field 40007). Breast cancer was defined as A)

ICD-10 C50 in the Cancer register (data field 40006, age at diagnosis from data field 40008), B) C50 (ICD-10) or 174 (ICD-9) in the

hospital inpatient records (from data fields 41270 and 41271, age defined based on data fields 41280 and 41281), or C) C50 (ICD-

10) as the primary or secondary cause of death (from data fields 40001 and 40002, age from data field 40007). Prostate cancer

was defined as A) ICD-10 C61 in the Cancer register (data field 40006, age at diagnosis from data field 40008), B) C61 (ICD-10) in

the hospital inpatient records (from data field 41270, age defined based on data field 41280), or C) C61 (ICD-10) as the primary or

secondary cause of death (from data fields 40001 and 40002, age from data field 40007).

White British individuals within the UK Biobank represented European ancestry, with all European-ancestry pairs unrelated to

KING’s kinship value 0.0442. South Asian ancestry was defined based on self-report (data field 21000) of being Indian, Pakistani,

or Bangladeshi (codes 3001, 3002, 3003). Black / Caribbean ancestry was similarly defined based on self-report of being Caribbean,

African, or any other Black background (codes 4001, 4002, 4003). These two non-European ancestry groups where chosen based on

having >50 cases available for analysis for all four diseases.

METHOD DETAILS

Polygenic risk scores
The PRSs were derived with LDpred,31 a software that weights the single-nucleotide polymorphisms in GWAS summary statistics by

their effect sizes by accounting for linkage disequilibrium (LD) between markers. The input weights were obtained from the largest

available disease consortia GWAS (Table S4).11–14 The LD reference panel consisted of 503 European individuals from 1000 Ge-

nomes phase 3.73 Out of 10 candidate PRSs concerning the LDpred default parameters for the fraction of causal variants, the

PRSs with the best discriminative capacity (measured with maximum area under the receiver-operator curve, AUC) were chosen

based on an earlier FinnGen data freeze (DF4) with 176,899 individuals. The PRSs were then calculated over autosomal chromo-

somes as the weighted sum of effect alleles. The number of variants used for each LDpred PRS are shown in Table S1. The

number of variants available for PRS calculation (e.g. due to being polymorphic in the population) was lowest in BioBank Japan

(67.1%-67.5%) and in individuals of African ancestry in MGB Biobank (75.9%-77.3%), with amount for the rest ranging from

89.9% to 100%. To perform the analysis in a setting as similar as possible to clinical use cases, where variant optimization cannot

always be done for the derivation and test sets, we did not seek to optimize variant overlap between datasets. Some of our datasets

had small overlap with the GWASs used for building the PRSs. These overlapping proportions were 5.9% for CAD and 7.5% for T2D

in Estonian Biobank and 2.0% in FinnGen for CAD, which may result in slight overestimation of effects within Estonian biobank and

FinnGen.

In UKBiobank, the LDpred PRSs were compared to two other types of PRSs generatedmostly in individuals of European ancestry:

1) to previously published PRSs containing a smaller number of variants (PGS Catalog IDs PGS000012, PGS000020, PGS000004,

PGS000662)3,10,17,18 and 2) to genome-wide PRSs generated with PRS-CS. In the smaller PRSs, the number of variants in the final

score in UK Biobank (out of the variants in the original score) was 48,523/49,310 for CAD, 7,491/7,502 for T2D, 306/313 for breast

cancer, and 267/269 for prostate cancer. PRS-CS uses HapMap3 variants when inferring posterior effect sizes,32 and we used 1000

Genomes Project European sample (N = 503) as the external LD reference panel, using autosomes.73 The PRS-CS scores were

generated with the PRS-CS-auto approach in the FinnGen dataset, using the same GWASs used for generating the LDpred

PRSs. The number of variants in UK Biobank (out of the variants in the original PRS-CS score) was 1,087,714/1,090,048 for CAD,

1,089,342/1,091,673 for T2D, 1,077,906/1,079,089 for breast cancer, and 1,089,645/1,092,093 for prostate cancer.When comparing

decreases in effect sizes between different PRSs and across ancestries, the decreases were calculated from regression estimates

(log odds).

QUANTIFICATION AND STATISTICAL ANALYSIS

All sample sizes are shown in Tables 1 and Table S2. In each study, each PRSwas scaled to zeromean and unit variance by ancestry.

In analyses by settlement in FinnGen, the scaling was done in the full FinnGen dataset. The odds ratio for risk of disease by one SD

increase for the PRS was assessed using a logistic regression model (Figures 1, 2, S1, and S2; Tables S2 and S3). In all models, the

covariates were age (age at baseline, at the end of follow-up, or birth year; depending on biobank) sex (for CHD and T2D), batch or
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genotyping array (when available), and the first 10 principal components of ancestry. Incident and prevalent cases were considered

jointly. For statistical analyses, each biobank used R (version 3.2.0 or later). ORs by ancestry were pooled by random effects meta-

analysis with function metagen() in R package meta (Figure 1, Table S2). All tests were two-tailed. P-value for heterogeneity was

calculated based on Cochran’s heterogeneity statistic (Table S2).
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